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Abstract—This paper presents an effective weighted-L1-sparse
representation of array covariance vectors (W-L1-SRACV) algorithm
which exploits compressed sensing theory for direction-of-arrival
(DOA) estimation of multiple narrow-band sources impinging on
the far field of a uniform linear array (ULA). Based on the sparse
representation of array covariance vectors, a weighted L1-norm
minimization is applied to the data model, in which the weighted vector
can be obtained by taking advantage of the orthogonality between the
noise subspace and the signal subspace. By searching the sparsest
coefficients of the array covariance vectors simultaneously, DOAs can
be effectively estimated. Compared with the previous works, the
proposed method not only has a super-resolution but also improves the
robustness in low SNR cases. Furthermore, it can effectively suppresses
spurious peaks which will disturb the correct judgment of real signal
peak in the signal recovery processing. Simulation results are shown
to demonstrate the efficacy of the presented algorithm.

1. INTRODUCTION

Array signal processing has been an important study field in the
past few decades [1], which plays a fundamental role in many
applications, such as electromagnetic [2], acoustic and seismic sensing,
etc.. Direction-of-arrival (DOA) estimation, which is also called spatial
spectra estimation, is one of the crucial applications of the array
signal processing. The existing popular DOA estimation methods can
be mainly classified into three types: beamforming [3, 4], Capon’s
method [5] and subspace algorithms based on covariance matrix
analysis. Beamforming spectrum suffers from the Rayleigh resolution
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limit, which is independent of the SNR. While, Capon’s method and
subspace algorithms, such as multiple signal classification (MUSIC) [6],
estimation of signal parameters via rotational invariance techniques
(ESPRIT) [7], and weighted subspace fitting (WSF) [8], are able to
resolve sources with super-resolution within a Rayleigh cell. Provided
that SNR is reasonably high, the sources are not highly correlated and
the number of snapshots is sufficient.

Recently, the DOA estimation problem by exploiting sparse
representation [9] has gained much attention. Gorodnitsky [10]
uses a recursive weighted minimum-norm algorithm called focal
underdetermined system solver (FOCUSS) to enforce sparsity in the
problem of DOA estimation, but it can only be used for single snapshot.
Cotter [11] combines multiple measurement vectors (MMV) and
matching pursuit (MP) to solve the joint-sparse recovery problem in
DOA estimation, however its angle resolution is unattractive. Instead
of approximating L0-norm with the L1-norm, Hyder [12] proposes
to make use of a class of Gaussian functions to deal with the L2,0-
norm minimization problem. However, it does not satisfy numerical
stability, as matrix inversion is inevitable in every iteration. In [13],
a sparse representation model is proposed, which is based on the L1-
norm penalty in time domain after the singular value decomposition
(SVD) of the data matrix. It converts the DOA estimation into a
problem of sparse signal recovery, and then solves it in a second order
cone (SOC) framework. Based on the fact that DOAs of incoming
signals are usually very sparse relative to the whole spatial domain, a
new sparse-representation-based DOA estimation method [14], referred
to as L1-sparsely representing array covariance vectors (L1-SRACV) is
proposed by exploiting compressed sensing theory [15]. It is carried
out by L1-norm minimization for it is a convex problem. However,
L1-norm minimization has a drawback that larger coefficients of signal
are punished more heavily than smaller coefficients, unlike the more
impartial punishment of the L0-norm. This leads to the degradation
of signal recovery performance based on direct L1-norm minimization.

In this paper, an effective weighted-L1-sparsely representing ar-
ray covariance vectors (W-L1-SRACV) algorithm based on compressed
sensing theory for DOA estimation is formulated. Via the sparse rep-
resentation of array covariance vectors, weighted L1-norm minimiza-
tion is introduced to the proposed approach. By taking advantage of
the orthogonality between the noise subspace and the signal subspace,
the weighted vector can be obtained. Through searching the sparsest
weighted coefficients of the array covariance vectors in an overcomplete
basis, DOAs can be estimated effectively. The proposed method can
not only effectually enforce the sparsity, but also successfully suppress
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the spurious peaks in signal recovery processing. Furthermore, it can
effectively improve the robustness in low SNR cases.

The outline of the paper is as follows. Section 2 briefly introduces
the data model. The presented DOA estimation method is discussed
in detail in Section 3. Section 4 presents several simulation results to
verify the performance of the proposed method. Section 5 provides a
concluding remark to summarize the paper.

2. DATA MODEL

Assume that K uncorrelated narrowband far-field signals uk(t) impinge
on a uniform linear array (ULA) consisting of M (M > K) elements
from distinct direction angles θk with power σ2

k, k = 1, . . . , K,
where the distance between adjacent elements is equal to half of the
wavelength. The M × 1 array output y(t) at time t can be expressed
as

y(t) = [y1(t), . . . , yM (t)]T =
K∑

k=1

a(θk)uk(t) + n(t)

= Au(t) + n(t), t = 1, . . . , N (1)
where A = [a(θ1), . . . ,a(θK)] is the M × K array manifold matrix,
in which a(θk) = [1, e−jπ sin θk , . . . , e−j(M−1)π sin θk ]T is the M × 1
steering vector. u(t) = [u1(t), . . . , uK(t)]T is a zero-mean signal vector,
n(t) = [n1(t), . . . , nK(t)]T with nk(t) denoting the additive noise of the
kth sensor, where nk(t) is a complex Gaussian random process with
zero-mean and equal covariance σ2IM , N is the number of data samples
and the superscript (·)T stands for the transpose operation.

From the data model (1), we can obtain the following M × M
array covariance matrix

R = E
{
y(t)yH(t)

}
= ARsAH + σ2IM (2)

where Rs = E{u(t)uH(t)} = diag{σ2
1, . . . , σ

2
K} is the signal covariance

matrix, in which diag{σ2
1, . . . , σ

2
K} denotes a diagonal matrix with

diagonal entries σ2
1, . . . , σ

2
K and IM represents an M × M identity

matrix. In addition, the operator (·)H and E{·} indicate conjugate
transpose and expectation, respectively.

3. THE PROPOSED W-L1 SRACV ALGORITHM

3.1. Background of Compressed Sensing

In most previous works, the DOA estimation is based on the Nyquist
sampling: the sampling rate must be at least twice the maximum
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frequency present in the signal. Compressed sensing theory is a novel
data collection and coding theory under the condition that signal is
sparse or compressible. It has been shown that when the measurement
matrix satisfies certain random properties, the original signal can be
reconstructed even when the number of observation is far less than the
number of Nyquist rate samples.

Compressed sensing considers the sparse reconstruction problem
of estimating an (approximately) sparse vector x with a finite length
N from an observed vector of measurements y with a finite length M
based on the following linear model (“measurement equation”)

y = Φx + z (3)

where Φ is an M ×N known measurement matrix, and each of its M
rows is usually orthogonal. z is an M ×1 unkown vector that accounts
for measurement noise and modeling errors. The reconstruction is
subject to the constraint that x is (approximately) K-sparse, that is,
at most K of its entries are not (approximately) zero and K ¿ N .

In domain Ψ, x can be represented as x =
∑N

i=1 ψisi = Ψs, where
x and s are the N × 1 column vectors, respectively. The basis matrix
Ψ = [ψ1, ψ2, . . . , ψN ]. Thus, (3) can be written as

y = Φx = ΦΨs = As (4)

x is thus transformed, or down sampled, to an M × 1 vector y. The
coefficient vector s can be solved by the following optimization

mins‖s‖1, s.t. As = y (5)

where ‖ · ‖1 means L1 norm.

3.2. Sparse Representation of DOA Estimation Problem

Consider each column (i.e., the array covariance vector) of R in (2).
Introduce an overcomplete basis Φ in terms of all possible source
locations. Let {ϕ1, . . . , ϕQ} be a sampling grid of all source locations
of interest, e.g., from −90◦ to 90◦ with 1◦ intervals. The number of
potential source locations Q will typically be much greater than that
of sources K or even the number of sensors M . Construct a matrix
composed of steering vectors corresponding to each potential source
location as its columns: Φ = [a(ϕ1), . . . ,a(ϕQ)] ∈ CM×Q. In this
framework, Φ is known and does not depend on the actual source
locations θ. We can reform the mth column of R as [14]

rm = E [y(t)y∗m(t)] = Φsm + σ2em, m = 1, 2, . . . , M (6)

where (·)∗ denotes the complex conjugate operation, Φ the M × Q
array manifold matrix as presented above, sm the Q×1 representation
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coefficient vector according to the above overcomplete basis, and the
error term em is an M × 1 vector with 1 in the mth entry and 0
elsewhere. An ideal sm should be the vector with all elements zeros
except for the K elements associated with the K basis vectors, i.e., an
ideal sm has a sparse framework related to the DOAs of the signals.
Then, the model (6) can be rewritten in matrix form as follow

R = ΦS + σ2IM (7)

where S = [s1, s2, . . . , sM ]. It is obvious that the ideal {sm}M
m=1 should

share the identical sparse structure, i.e., the nonzero elements of each
ideal sm should appear in the same row of S. By bringing in a vector
s◦ = [s◦1, s

◦
2, . . . , s

◦
Q], where the qth element s◦q equals to the L2-norm

of the qth row of S, i.e., s◦q = ‖(S)q·‖2 = (
∑M

m=1 s2
qm)1/2, we find that

knowledge of the ideal {sm}M
m=1 sharing a specific sparse structure

can be coherently described by s◦ with the same sparse structure.
Thus, seeking a sufficiently sparse s◦ will make {sm}M

m=1 consistently fit
{Rm}M

m=1 as sparsely as possible in a manner such that all the elements
in a row of S tend to be zero or nonzero simultaneously. As a result,
DOA estimation based on (7) can be equivalent to find a sufficiently
sparse s◦, supposing that the error term σ2IM is well suppressed. When
s◦ is scored, DOAs can be determined from its sparse framework by
plotting it on the grid of direction samples.

3.3. DOA Estimation

According to the sparse recovery theory, DOA estimation based on (7)
can be described as the following constrained optimization problem

min
S
‖s◦‖1 s.t. R = ΦS + σ2IM (8)

In practical application, the unknown R can be consistently estimated
by R̂ = 1

N

∑N
t=1[y(t)yH(t)] = R + ∆R where ∆R = R̂ − R is the

estimated error whose vectorized form satisfies

vec(∆R) ∼ AsN
(
0,

1
N

RT ⊗R
)

(9)

where vec(·) denotes the stack operation, placing in order, the columns
of a matrix on the top of one another, AsN(µ, σ2) the asymptotic
normal distribution with mean µ and variance σ2, and ⊗ the Kronecker
matrix product. If R̂ takes place of R directly, the equality constrain
in (8) collapses due to ∆R.

From (9), it can be inferred that

Jvec
[
R̂−ΦS− σ2IM

]
∼ AsN(0, IM2) (10)
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where J =
√

NR−T
2 ⊗ R− 1

2 . Then, we can obtain the following
expression

∥∥∥Jvec
[
R̂−ΦS− σ2IM

]∥∥∥
2

2
∼ Asχ2

(
M2

)
(11)

where Asχ2(M2) signifies the asymptotic chi-square distribution with
M2 degrees of freedom. We recommend a parameter ξ in (11) such
that ∥∥∥Jvec

[
R̂−ΦS− σ2IM

]∥∥∥
2

2
≤ ξ (12)

with a high probability p, where p is large and is close to 1. In general,
it is enough to set p = 0.999 to determine the value of ξ, which makes
the above inequality robustly hold for an arbitrary array.

After the above eduction and analysis, we can get a robust and
more controllable expression for DOA estimation as follow [14]

min
S
‖s◦‖1 s.t. ‖z−Ψvec(S)‖2 ≤

√
ξ (13)

where z = Ĵvec(R̂ − σ̂2IM ), Ψ = Ĵ[IM ⊗ Φ], Ĵ =
√

NR̂
−T

2 ⊗ R̂
− 1

2 ,
σ̂ is the estimation of σ. Note that an unnormalized overcomplete
basis relative to vec(S) has an infaust effect on computing its correct
sparse structure, so, before the calculation of (13), a renormalization
procedure is needed for each column of Ψ which is normalized to 1 in
the L2-norm as done in [16].

The merits of the L1-SRACV method lie in its superior resolution
and explicit error-suppression criterion that makes it statistically
robust even in low SNR cases. However, L1-SRACV has one big
drawback, that is, it can not be obtained exact result in the recovery
processing due to the direct L1-norm minimization.

3.4. Weighted L1-Norm Minimization

The L1-SRACV algorithm enforces sparsity by the direct L1-norm
penalty. However, the direct L1-norm minimization can not obtain
exact result in the recovery precessing. To solve the single measurement
vector (SMV) problem, Candes devised an iterative reweighted
approach of L1-norm minimization that larger weights are assigned
to the entries of the recovered signal whose indices are outside of the
signal support [17]. The iterative L1-norm reweighting is given as

w
(p+1)
i =

[
x

(p+1)
i + ε

]−1
(14)

where xi denotes the ith entry of the recovered signal and wi the
corresponding weighted value, ε(> 0) is an application-dependent
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parameter and it must be carefully designed, p is the iteration count
number.

Now, the idea of iterative reweighted L1-norm minimization is
expanded from the SMV problem to the MMV problem. This idea can
be achieved by utilizing the orthogonality between the noise subspace
and the signal subspace spanned by the array manifold matrix [3].

By taking advantage of the eigendecomposition on the array
covariance matrix R, the following equation can be obtained

R = UΣUH = [US UN ]Σ[US UN ]H (15)

where Σ is a diagonal matrix which is composed of the eigenvalues
of the array covariance matrix, U consists of the corresponding
eigenvectors, US is the signal subspace, which is the first K columns
of U and UN is the noise subspace, which is the last M −K columns
of U. It is easy to know that

AHUN = 0 ∈ CK×(M−K) (16)

Considering the relationship between the overcomplete basis
matrix Φ and the array manifold matrix A, we can rewrite Φ = [A B],
where B ∈ CM×(Q−K).

Utilizing the property in (16), we have the following equation

ΦHUN =
[
UH

NA UH
NB

]H
=

[
0H DH

]H
(17)

where D(l2)
i > 0, D(l2)

i denotes the ith entry of D(l2), D(l2) is the
column vector that denotes the L2-norm of each row of D. In practical
application, we have to substitute the sample data matrix R̂ for R.
Substituting ÛN for UN yields that

ΦHÛN =
[
ÛH

NA ÛH
NB

]H
=

[
WH

A WH
B

]H
= W (18)

The weighted vector can be expressed as

w(l2) =
[
W(l2)T

A W(l2)T
B

]T
(19)

when the snapshot N → ∞, then W(l2)
A → 0(l2) ∈ RK×1 and

W(l2)
B → D(l2) ∈ R(Q−K)×1 and then the entries of W(l2)

A are smaller
than those of W(l2)

B .
Define

G = diag
{
w(l2)

}
. (20)

Consequently, we can employ G as a weighted matrix to achieve
the idea that the nonzero entries whose indices are inside of the row
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support of the jointly sparse signals are punished by smaller weights,
and the other entries whose indices are more likely to be outside of
the row support of the jointly sparse signals are punished by larger
weights. Finally, we can formulate the weighted L1-norm minimization
for sparse signal reconstruction

min
S
‖Gs◦‖1 s.t. ‖z−Ψvec(S)‖2 ≤

√
ξ (21)

Equation (21) can be calculated by SOC programming software
packages such as CVX. The DOA estimates are then obtained by
plotting s◦, solved from (21).

The procedure of the proposed W-L1-SRACV method is concluded
as follows:

(1) Collect received data and estimate the covariance matrix R̂.

(2) Compute the eigendecomposition of R̂ and obtain the noise
subspace ÛN .

(3) Construct the overcomplete basis matrix Φ.
(4) Obtain the weighted matrix G by (20).
(5) Get z and Ψ by numeration.
(6) Estimate DOA by calculating (21).

4. SIMULATION

In this section, several simulation results are presented to illustrate
the effectiveness of the proposed method. Assume the uniform linear
array (ULA) have M = 8 sensors whose separation distances are half
a wavelength. Note that the extension of the presented algorithm to
an arbitrary array is straightforward.

In the first simulation, we compare the spectrum of the three
algorithm: MUSIC, the L1-SRACV algorithm and the presented
approach. Consider four uncorrelated equal power signals that arrive
from [−35◦, −30◦, −10◦, 20◦] impinging on the array. The direction
grid is set to have 181 points sampled from −90◦ to 90◦ with 1◦
intervals, and the number of snapshots is 256, the signal-to-noise-
ratio (SNR) is 5 dB. From Figure 1, we can see that both L1-
SRACV and the proposed approach have higher resolution than that of
MUSIC. It is to note that the L1-SRACV has serious spurious peaks,
while the presented method has no spurious peak and show better
performance than MUSIC and the L1-SRACV. The main reason for
existing spurious peaks is that: firstly, we usually substitute L1-norm
for L0-norm in the recovery processing, since the L0-norm optimization
is an NP hard problem; secondly, the problem we want to solve is
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Figure 1. Spatial spectra for MUSIC, L1-SRACV and proposed
method.

not absolutely sparse when there exists noise in practical application;
in addition, the coherence of the columns is usually so high in the
overcomplete basis matrix that it is hard to satisfy the restricted
isometry property (RIP). The proposed method can suppress spurious
peaks well because of the orthogonality between the noise subspace
and the array manifold matrix.

In the following simulation, the root-mean-square-error (RMSE)
of DOA estimation versus angel separation between L1-SRACV and
the proposed method is presented. And it is defined as

RMSE =

√√√√ 1
100K

100∑

n=1

K∑

k=1

(
θ̂k(n)− θk

)2
(22)

where θ̂k(n) is the estimation of θk for the nth Monte Carlo trial and K
the number of signals. Assume that two uncorrelated signals impinge
on the array from θ1 = −30◦ and θ2 = −30◦ + ∆θ, respectively, where
∆θ is varied from 3◦ to 10◦ in 1◦ steps. The SNR is set to 5 dB and
the snapshot is 512. The RMSE versus angel separation in Figure 2 is
obtained via 100 independent Monte Carlo trials for each angel spacing.
It is presented that the proposed algorithm tends to become unbiased
when ∆θ is greater than about 5◦, while the unbiased angle spacing is
about 9◦ for the L1-SRACV approach.

Figure 3 shows a comparison of the RMSE of DOA estimation
versus SNR between the L1-SRACV approach and the proposed
method. In this simulation, two uncorrelated sources at −10◦ and
10◦ are considered. The number of snapshot is taken as N = 256,
and all the results are averaged over 100 Monte Carlo runs for each
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Figure 2. RMSE of the DOA estimation versus angel separation
between L1-SRACV and the proposed method.
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Figure 3. RMSE of the DOA estimation versus SNR between L1-
SRACV and the proposed method.

SNR. It is easy to know from Figure 3 that the proposed method show
better performance than the L1-SRACV algorithm, especially in low
SNR cases.

5. CONCLUSION

In this paper, a W-L1-SRACV algorithm is developed for DOA
estimation, in which the sparse representation of array covariance
vectors and weighted L1-norm are exploited. The weighted vector is
obtained by exploiting the orthogonality between the noise subspace
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and the signal subspace spanned by array manifold matrix. DOAs
can be effectively estimated simultaneously by searching the sparsest
coefficients of the array covariance vectors. Compared with the
previous works, the proposed method can offer a number of advantages,
such as smaller estimation error, higher resolution, etc.. Furthermore,
the spurious peaks can be successfully suppressed in signal recovery
processing.
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