Vol. 39
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-04-12
A Compact Multilayer Configuration Filter with Inner Mixed Electric and Magnetic Coupling
By
Progress In Electromagnetics Research C, Vol. 39, 77-89, 2013
Abstract
A novel cascade microstrip filter with mixed electric and magnetic coupling is proposed and examined. For the first time, we designed a novel multilayer configuration resonator with a compact size. Compared with conventional open-loop filter, the size decreased 75%. First, using novel multilayer configuration resonator instead of monolayer configuration resonator, the size decrease about 45%. Meanwhile, two microstrip patches can be served as inner coupling capacitor, which create and strengthen electric field. Owing to this inner coupling, the size of filter can be further reduced. What's more, with a section of high characteristic impedance transmission line connected to the ground though a via-hole, it can be served as coupling inductor and create main magnetic filed, base on this structure mixed EM coupling is realized, and can generate additional transmission zero. That's means adopt low-order filter can achieve same characteristic as high-order filter. Based on the above solutions, the filter size can be sharply decreased to 12.5 mm×7.7 mm (i.e.,0.05λg×0.033λg). Furthermore, advantages of using this type filter are not only low insert loss, but also increased attenuation out-of-band with controllable transmission zeros.
Citation
Wei Tang, Jun He, and Xiaobo Yang, "A Compact Multilayer Configuration Filter with Inner Mixed Electric and Magnetic Coupling," Progress In Electromagnetics Research C, Vol. 39, 77-89, 2013.
doi:10.2528/PIERC13022302
References

1. Xiao, O. Y., "Compact quasi-elliptic filter using mixed EM coupling λ/4 stepped-impedance resonators," 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Vol. 4, 1-4, May 5{8, 2012.

2. Hsu, C.-Y., C.-Y. Chen, and H.-R. Chuang, "Microstrip dual-band bandpass filter design with closely specified passbands," IEEE Trans. on Microw. Theory and Tech., Vol. 61, No. 1, Jan. 2013.
doi:10.1109/TMTT.2012.2222912

3. Zhang, L., Z.-Y. Yu, and S.-G. Mo, "Novel microstrip bandpass filter with controllable transmission zeros," 2009 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 1016-1018, Oct. 27-29, 2009.

4. Wei, C.-L., B.-F. Jia, Z.-J. Zhu, and M.-C. Tan, "Novel trigonal dual-mode filter with controllable transmission zeros," IET Microw, Antennas Propag., Vol. 5, No. 13, 1563-1567, May 2010.
doi:10.1049/iet-map.2010.0517

5. Chu, Q.-X. and H. Wang, "A compact open-loop filter with mixed electric and magnetic coupling," IEEE Trans. on Microw. Theory and Tech., Vol. 56, No. 2, Feb. 2008.
doi:10.1109/TMTT.2007.914642

6. Wang, H. and Q.-X. Chu, "An inline coaxial quasi-elliptic filter with controllable mixed electric and magnetic coupling," IEEE Trans. on Microw. Theory and Tech., Vol. 57, No. 3, Mar. 2009.

7. Wang, H. and Q.-X. Chu, "An EM-coupled triangular open-loop filter with transmission zeros very close to passband," IEEE Microw. and Wireless Components Letters, Vol. 19, No. 2, Feb. 2009.

8. Chu, Q-X. and H. Wang, "Planar quasi-elliptic filters with inline em coupled open-loop resonators," 2008 IEEE MTT-S International Microwave Workshop Series on Art of Miniaturizing RF and Microwave Passive Components, 47-50, Chengdu, China, Dec. 2008.
doi:10.1109/IMWS.2008.4782258

9. Abdel-Rahman, A. B. and A. S. Omar, "Miniaturized bandpass filters using capacitor loaded folded slot coupled resonators," 2010-IEEE APS, Middle East Conference on Antennas and Propagation (MECAP), 1-4, Cairo, Egypt, Oct. 2010.

10. Ma, K., J.-G. Ma, K. S. Yeo, and M. A. Do, "A compact size coupling controllable filter with separate electric and magnetic coupling paths," IEEE Trans. on Microw. Theory and Tech., Vol. 54, No. 3, 1113-1119, Mar. 2006.
doi:10.1109/TMTT.2005.864118

11. Tsai, C.-M., S.-Y.Lee, and C.-C Tsai, "Performance of a planar filter using a 0o feed structure," IEEE Trans. on Microw. Theory and Tech., Vol. 50, No. 10, 2362-2367, Oct. 2002.
doi:10.1109/TMTT.2002.803421

12. Hunter, I. C., Theory and Design of Microwave Filters, IEE Press, London, UK, 2001.
doi:10.1049/PBEW048E

13. Kuo, J.-T., C.-L. Hsu, and E. Shih, "Compact planar quasi-elliptic function filter with inline stepped-impedance resonators," IEEE Trans. on Microw. Theory and Tech., Vol. 55, No. 8, 1747-1755, Aug. 2007.
doi:10.1109/TMTT.2007.901604

14. Goldfarb, M. E. and R. A. Pucel, "Modeling via hole grounds in microstrip," IEEE Microw. Guided Wave Lett., Vol. 1, No. 6, 135-137, Jun. 1991.
doi:10.1109/75.91090

15. Hedayati, M., M. J. Kazemi, and R. Safian, "Design and implementation of a multi triangular microstrip resonator passband filter based on mixed coupling," 2011 IEEE International RF and Microwave Conference (RFM 2011), 1-4, Serernban, Malaysia, Dec. 12-14, 2011.

16. Kuo, J.-T., S.-C. Tang, and S.-H. Lin, "Quasi-elliptic function bandpass filter with upper stopband extension and high rejection level using cross-coupled stepped-impedance resonators," Progress In Electromagnetics Research, Vol. 114, 395-405, 2011.

17. Kuo, J.-T., T.-W. Lin, and S.-J. Chung, "New compact triple-mode resonator filter with embedded inductive and capacitive cross coupling," Progress In Electromagnetics Research, Vol. 135, 435-449, 2013.