Vol. 38
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-03-31
Cross-Polarization Reduction of E-Shaped Microstrip Array Using Spiral-Ring Resonator
By
Progress In Electromagnetics Research C, Vol. 38, 217-227, 2013
Abstract
Design of (2 x 2) E-shaped microstrip patch antenna array integrated with spiral ring resonators (SRRs) is introduced for the reduction of cross-polar (XP) radiation. The addition of SRRs in the array structure does not affect other characteristics of the array antenna. The array is designed to function in the 5.25 GHz which corresponds to IEEE 802.11a wireless LAN application. The characteristic analysis such as return loss (RL), bandwidth (BW), and radiation patterns of the antenna with and without SRRs have been investigated. The array offers a bandwidth of 405 MHz (For RL < -10 dB) covering frequencies ranges from 5.175 to 5.580 GHz and gain of 12.60 dBi has been achieved. The array has been studied both numerically and experimentally by introducing SRRs. The XP radiation has been reduced by 10.5 dB with two sets of SSRs of similar geometry placed in between the patch elements of the array structure. Prototype antennas with and without SRRs have been fabricated tested and a remarkable agreement is obtained between the measured and the simulated results.
Citation
Chandan Kumar Ghosh, and Susanta Kumar Parui, "Cross-Polarization Reduction of E-Shaped Microstrip Array Using Spiral-Ring Resonator," Progress In Electromagnetics Research C, Vol. 38, 217-227, 2013.
doi:10.2528/PIERC13012103
References

1. Fujimoto, K. and J. R. James, Mobile Antenna System Handbook, 2nd Ed., Artech House, Inc., 2001.

2. Blaunstein, N. and J. B. Andersen, Multipath Phenomena in Cellular Networks, Artech House, Inc., MA, 2003.

3. Hansen, R. C., "Cross polarization of microstrip patch antennas," IEEE Trans. Antennas Propag., Vol. 35, No. 6, 731-732, Jun. 1987.
doi:10.1109/TAP.1987.1144154

4. Huynh, T., K. F. Lee, and R. Q. Lee, "Cross-polarization characteristics of rectangular patch antennas," Electron. Lett., Vol. 24, No. 8, 463-464, 1988.
doi:10.1049/el:19880313

5. Lee, K. F., K. M. Luk, and P. Y. Tam, "Cross-polarization characteristics of circular patch antennas," Electron. Lett., Vol. 28, No. 6, 587-589, 1992.
doi:10.1049/el:19920370

6. Petosa, A., A. Ittipiboon, and N. Gagnon, "Suppression of unwanted probe radiation in wideband probe-fed microstrip patches," Electron. Lett., Vol. 35, No. 5, 355-357, Mar. 4, 1999.
doi:10.1049/el:19990269

7. Schejbal, V. and V. Kovarik, "A method of cross-polarization reduction," IEEE Antennas Propag. Mag., Vol. 48, No. 5, 108-111, Oct. 2006.

8. Li, P., H. W. Lai, K. M. Luk, and K. L. Lau, "A wideband patch antenna with cross-polarization suppression," IEEE Antennas Wireless Propag. Lett., Vol. 3, 211-214, 2004.
doi:10.1109/LAWP.2004.834937

9. Chen, Z. N. and M. Y. W. Chia, "Broad-band suspended probe-fed plate antenna with low cross-polarization level," IEEE Trans. Antennas Propag., Vol. 51, No. 2, 345-346, Feb. 2003.
doi:10.1109/TAP.2003.809062

10. Hsu, W. H. and K. L. Wong, "Broad-band probe-fed patch antenna with a U-shaped ground plane for cross-polarization reduction," IEEE Trans. Antennas Propag., Vol. 50, No. 3, 352-355, Mar. 2002.
doi:10.1109/8.999626

11. Wong, K. L., C. L. Tang, and J. Y. Chiou, "Broad-band probe-fed patch antenna with a W-shaped ground plane," IEEE Trans. Antennas Propag., Vol. 50, No. 6, 827-831, Jun. 2002.
doi:10.1109/TAP.2002.1017663

12. Guha, D., M. Biswas, and Y. M. M. Antar, "Microstrip patch antenna with defected ground structure for cross polarization suppression," IEEE Antennas Wireless Propag. Lett., Vol. 4, 455-458, 2005.
doi:10.1109/LAWP.2005.860211

13. Otero, M. F. and R. G. Rojas, "Resistive treatment to reduce edge diffraction from large wedge shaped objects and planar antennas," Radio Sci., Vol. 32, 1745-1759, 1997.
doi:10.1029/97RS00710

14. Sainati, R. A., CAD of Micro Strip Antenna for Wireless Applications, Artech House, Inc., 1996.

15. Chung, Y., S.-S. Jeon, S. Kim, D. Ahn, J.-I. Choi, and T. Itoh, "Multifunctional microstrip transmission lines integrated with defected ground structure for RF front-end application," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 5, May 2004.
doi:10.1109/TMTT.2004.827013

16. Chung, Y., S. S. Jeon, D. Ahn, J. I. Choi, and T. Itoh, "High isolation dual-polarized patch antenna using integrated defected ground structure," IEEE Microwave and Wireless Components Letters, Vol. 14, 4-6, Jan. 2004.
doi:10.1109/LMWC.2003.821501

17. Gomez, J. L. and A. A. Melcon, "Non-orthogonality relations between complex-hybrid-modes: An application for the leaky-wave analysis of laterally-shielded top-open planar transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, 760-767, Mar. 2004.
doi:10.1109/TMTT.2004.823526