Vol. 37
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-01-24
Study of the Inter-Stage Capacitor Effects of a RF CMOS Power Amplifier to Enhance Its Efficiency
By
Progress In Electromagnetics Research C, Vol. 37, 29-40, 2013
Abstract
In this work, we analyze the effects of an inter-stage capacitor located between the power stage input and the driver stage output on the overall efficiency of a RF CMOS power amplifier and on gate-drain reliability problems. To verify the analyzed effects, we designed a RF CMOS power amplifier with a center frequency of 1.85-GHz. Class-D amplifiers with a feedback resistor are used as driver stages, and a class-E amplifier is used as the power stage. A distributed active transformer is adapted for use in the output power combiner for high efficiency. The inter-stage capacitor between driver and the power stage is removed to enhance the switching operation of the power stage. By eliminating the inter-stage capacitor, the supply voltage of the driver stage can be decreased compared to that in a general amplifier. Accordingly, the power-added efficiency is improved and the gate-drain reliability problems are moderated compared to a general amplifier. The analyzed effect of the inter-stage capacitor is verified successfully using the measured results of the designed amplifiers.
Citation
Hoyong Hwang, Donghwan Seo, Jonghoon Park, and Changkun Park, "Study of the Inter-Stage Capacitor Effects of a RF CMOS Power Amplifier to Enhance Its Efficiency," Progress In Electromagnetics Research C, Vol. 37, 29-40, 2013.
doi:10.2528/PIERC12122806
References

1. Wong, S.-K., F. Kung, S. Maisurah, and M. N. B. Osman, "A Wimedia compliant CMOS RF power amplifier for ultra-wideband (UWB) transmitter," Progress In Electromagnetics Research, Vol. 112, 329-347, 2011.

2. Wang, S. and R.-X. Wang, "A tunable bandpass filter using Q-enhanced and semi-passive inductors at S-band in 0.18-μm CMOS," Progress In Electromagnetics Research B, Vol. 28, 55-73, 2011.

3. Wong, S.-K., C.-P. Ooi, W.-L. Pang, and K.-Y. Chan, "A high gain and high e±ciency CMOS driver amplifier for 3.5 GHz WiMAX applications," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 4, 512-524, 2012.
doi:10.1163/156939312800030659

4. Lee, C., J. Park, and C. Park, "X-band CMOS power amplifier using mode-locking method for sensor applications," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 5-6, 604-633, 2012.
doi:10.1080/09205071.2012.710783

5. Seo, D., C. Lee, J. Park, and C. Park, "Power detection method using a virtual ground node for RF CMOS power amplifier applications," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 17-18, 2341-2347, 2012.
doi:10.1080/09205071.2012.734033

6. Aoki, I., S. D. Kee, D. B. Rutledge, and A. Hajimiri, "Distributed active transformer --- A new power-combining and impedance-transformation technique," IEEE Trans. Microw. Theory and Tech., Vol. 50, No. 1, 316-331, Jan. 2002.
doi:10.1109/22.981284

7. Aoki, I., S. D. Kee, D. B. Rutledge, and A. Hajimiri, "Fully integrated CMOS power amplifier design using the distributed active-transformer architecture," IEEE J. Solid-Stage Circuits, Vol. 37, No. 3, 371-383, Mar. 2002.
doi:10.1109/4.987090

8. Park, C., Y. Kim, H. Kim, and S. Hong, "A 1.9-GHz CMOS power amplifier using three-port asymmetric transmission line transformer for a polar transmitter," IEEE Trans. Microw. Theory and Tech., Vol. 55, No. 2, 230-238, Feb. 2007.
doi:10.1109/TMTT.2006.889152

9. Park, J., C. Lee, and C. Park, "A brief review: Stage-convertible power amplifier using differential line inductor," Wireless Engineering and Technology, Vol. 3, No. 4, 189-194, Oct. 2012.
doi:10.4236/wet.2012.34027

10. Yang, J.-R., H.-C. Son, and Y.-J. Park, "A class E power amplifier with coupling coils for a wireless power transfer system," Progress In Electromagnetics Research C, Vol. 35, 13-22, 2013.

11. Kang, J., A. Hajimiri, and B. Kim, "A single-chip linear CMOS power amplifier for 2.4 GHz WLAN," IEEE International Solid-State Circuits Conference, 761-769, Feb. 2006.

12. Chowdhury, D., C. D. Hull, O. B. Degani, Y. Wang, and A. M. Niknejad, "A fully integrated dual-mode highly linear 2.4 GHz CMOS power amplifier for 4G WiMax applications," IEEE J. Solid-Stage Circuits, Vol. 44, No. 12, 3393-3402, Dec. 2009.
doi:10.1109/JSSC.2009.2032277

13. Afsahi, A., A. Behzad, and L. E. Larson, "A 65nm CMOS 2.4 GHz 31.5dBm power amplifier with a distributed LC power-combining network and improved linearization for WLAN applications," IEEE International Solid-State Circuits Conference, 452-453, Feb. 2010.

14. Chen, Y.-J. E., C.-Y. Liu, T.-N. Luo, and D. Heo, "A high-efficient CMOS RF power amplifier with automatic adaptive bias control," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 11, 615-617, Nov. 2006.
doi:10.1109/LMWC.2006.884909