Vol. 39
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-04-25
Research on Eigen-Mode of Coaxial Outer Corrugated Resonator
By
Progress In Electromagnetics Research C, Vol. 39, 165-177, 2013
Abstract
For the coaxial outer corrugated resonator, dispersion equations of TE and TM modes are derived by the surface impedance theory, and the first order transmission line equations with mode coupling coefficients are deduced by means of the transmission line and coupling wave theory. According to them, resonant frequency, diffractive quality factor and field profile of geometry of the eigen-mode about the coaxial outer corrugated resonator can be calculated. The effect of outer slot depth, tooth width as well as asymptotic angle of outer conductor and slope angle of inner conductor on resonant frequency and quality factor can be researched. Results show that changes of the outer slot depth and tooth width slightly affect the field frequency and quality factor and that the changes of the asymptotic angle of outer conductor and slope angle of inner conductor almost do not affect field frequency, but greatly affect quality factor.
Citation
Shenyong Hou, Sheng Yu, and Hongfu Li, "Research on Eigen-Mode of Coaxial Outer Corrugated Resonator," Progress In Electromagnetics Research C, Vol. 39, 165-177, 2013.
doi:10.2528/PIERC12120503
References

1. Grudiev, A., J. Y. Raguin, and K. Schunemann, "Numerical study of mode competition in coaxial cavity gyrotrons with corrugated insert," Int. J. Infrared Millimeter Waves, Vol. 24, 173-187, 2003.
doi:10.1023/A:1021890602624

2. Singh, K., P. K. Jain, and B. N. Basu, "Analysis of a corrugated coaxial waveguide resonator for mode rarefaction in a gyrotron," IEEE Trans. Plasma Sci., Vol. 33, No. 3, 1024-1030, 2005.
doi:10.1109/TPS.2005.848604

3. Iatrou, C. T., "Mode selective properties of coaxial gyrotron resonators," IEEE Trans. Plasma Sci., Vol. 24, No. 3, 596-605, 1996.
doi:10.1109/27.532942

4. Iatrou, C. T., S. Kern, and A. B. Pavelyev, "Coaxial cavities with corrugated inner conductor for gyrotrons," IEEE Trans. on Microwave Theory Tech., Vol. 44, No. 1, 56-64, 1996.
doi:10.1109/22.481385

5. Dumbrajs, O. and G. I. Zaginaylov, "Ohmic losses in coaxial gyrotron cavities with corrugated insert," IEEE Trans. Plasma Sci., Vol. 32, No. 3, 861-866, 2004.
doi:10.1109/TPS.2004.827591

6. Zaginaylov, G. I., N. N. Tkachuk, V. L. Shcherbinin, and K. Schuenemann, "Rigorous calculation of energy losses in cavity of ITER relevant coaxial gyrotron," Proc. of 35th EuMW, 1107-1110, 2005.

7. Zaginaylov, G. I. and I. V. Mitina, "Electromagnetic analysis of coaxial gyrotron cavity with the inner conductor having corrugations of an arbitrary shape," Progress In Electromagnetics Research B, Vol. 31, 339-356, 2011.

8. Ioannidis, Z. C., O. Dumbrajs, and I. G. Tigelis, "Linear and non-linear inserts for genuinely wide-band continuous frequency tunable coaxial gyrotron cavities," Int. J. Infrared Millimeter Waves, Vol. 29, No. 4, 416-423, 2008.
doi:10.1007/s10762-008-9336-y

9. Piosczyk, B., A. Arnold, G. Dammertz, et al. "Coaxial cavity gyrotron-recent experimental results," IEEE Trans. Plasma Sci., Vol. 30, No. 3, 819-827, 2002.
doi:10.1109/TPS.2002.801557

10. Flyagin, V. A. and G. S. Nusinovich, "Gyrotron oscillators Proceedings of the IEEE,", Vol. 76, 644-656, Oct. 1988.

11. Felch, K., H. Huey, and H. Jory, "Gyrotrons for ECH applications," J. Fusion Energy, Vol. 9, 59-75, 1990.
doi:10.1007/BF01057322

12. Makowski, M., "ECRF systems for ITER," IEEE Trans. Plasma Sci., Vol. 24, 1023-1032, 1996.
doi:10.1109/27.533109

13. Thumm, M., "MW gyrotron development for fusion plasma applications," Plasma Physics and Controlled Fusion, Vol. 45, No. 12A, 143-161, 2003.
doi:10.1088/0741-3335/45/12A/011

14. Dammertz, G., S. Alberti, A. Arnold, et al. "High-power gyrotron development at Forschungszentrum Karlsruhe for fusion applications," IEEE Trans. Plasma Sci., Vol. 34, No. 2, 173-186, 2006.
doi:10.1109/TPS.2006.872176

15. La Haye, R. J., et al. "Control of neoclassical tearing modes in DIII-D," Phys. Plasmas, Vol. 9, 2051, 2002.
doi:10.1063/1.1456066

16. Dammertz, G., E. Borie, C. T. Iatrou, M. Kuntze, B. Pioscyk, and M. K. Thumm, "140-GHz gyrotron with multimegawatt output power," IEEE Trans. Plasma Sci., Vol. 28, No. 3, 561-566, 2000.
doi:10.1109/27.887673

17. Borie, E. and O. Dumbrajs, "Calculation of eigenmodes of tapered gyrotron resonators," International Journal of Electron., Vol. 60, No. 2, 143-154, 1986.
doi:10.1080/00207218608920768

18. Liu, R. and H. Li, "Study of eigenmodes of coaxial resonators using coupled-wave theory," J. Infrared Milli. Terahertz Waves, Vol. 31, 995-1003, 2010.