1. Grudiev, A., J. Y. Raguin, and K. Schunemann, "Numerical study of mode competition in coaxial cavity gyrotrons with corrugated insert," Int. J. Infrared Millimeter Waves, Vol. 24, 173-187, 2003.
doi:10.1023/A:1021890602624
2. Singh, K., P. K. Jain, and B. N. Basu, "Analysis of a corrugated coaxial waveguide resonator for mode rarefaction in a gyrotron," IEEE Trans. Plasma Sci., Vol. 33, No. 3, 1024-1030, 2005.
doi:10.1109/TPS.2005.848604
3. Iatrou, C. T., "Mode selective properties of coaxial gyrotron resonators," IEEE Trans. Plasma Sci., Vol. 24, No. 3, 596-605, 1996.
doi:10.1109/27.532942
4. Iatrou, C. T., S. Kern, and A. B. Pavelyev, "Coaxial cavities with corrugated inner conductor for gyrotrons," IEEE Trans. on Microwave Theory Tech., Vol. 44, No. 1, 56-64, 1996.
doi:10.1109/22.481385
5. Dumbrajs, O. and G. I. Zaginaylov, "Ohmic losses in coaxial gyrotron cavities with corrugated insert," IEEE Trans. Plasma Sci., Vol. 32, No. 3, 861-866, 2004.
doi:10.1109/TPS.2004.827591
6. Zaginaylov, G. I., N. N. Tkachuk, V. L. Shcherbinin, and K. Schuenemann, "Rigorous calculation of energy losses in cavity of ITER relevant coaxial gyrotron," Proc. of 35th EuMW, 1107-1110, 2005.
7. Zaginaylov, G. I. and I. V. Mitina, "Electromagnetic analysis of coaxial gyrotron cavity with the inner conductor having corrugations of an arbitrary shape," Progress In Electromagnetics Research B, Vol. 31, 339-356, 2011.
8. Ioannidis, Z. C., O. Dumbrajs, and I. G. Tigelis, "Linear and non-linear inserts for genuinely wide-band continuous frequency tunable coaxial gyrotron cavities," Int. J. Infrared Millimeter Waves, Vol. 29, No. 4, 416-423, 2008.
doi:10.1007/s10762-008-9336-y
9. Piosczyk, B., A. Arnold, G. Dammertz, et al. "Coaxial cavity gyrotron-recent experimental results," IEEE Trans. Plasma Sci., Vol. 30, No. 3, 819-827, 2002.
doi:10.1109/TPS.2002.801557
10. Flyagin, V. A. and G. S. Nusinovich, "Gyrotron oscillators Proceedings of the IEEE,", Vol. 76, 644-656, Oct. 1988.
11. Felch, K., H. Huey, and H. Jory, "Gyrotrons for ECH applications," J. Fusion Energy, Vol. 9, 59-75, 1990.
doi:10.1007/BF01057322
12. Makowski, M., "ECRF systems for ITER," IEEE Trans. Plasma Sci., Vol. 24, 1023-1032, 1996.
doi:10.1109/27.533109
13. Thumm, M., "MW gyrotron development for fusion plasma applications," Plasma Physics and Controlled Fusion, Vol. 45, No. 12A, 143-161, 2003.
doi:10.1088/0741-3335/45/12A/011
14. Dammertz, G., S. Alberti, A. Arnold, et al. "High-power gyrotron development at Forschungszentrum Karlsruhe for fusion applications," IEEE Trans. Plasma Sci., Vol. 34, No. 2, 173-186, 2006.
doi:10.1109/TPS.2006.872176
15. La Haye, R. J., et al. "Control of neoclassical tearing modes in DIII-D," Phys. Plasmas, Vol. 9, 2051, 2002.
doi:10.1063/1.1456066
16. Dammertz, G., E. Borie, C. T. Iatrou, M. Kuntze, B. Pioscyk, and M. K. Thumm, "140-GHz gyrotron with multimegawatt output power," IEEE Trans. Plasma Sci., Vol. 28, No. 3, 561-566, 2000.
doi:10.1109/27.887673
17. Borie, E. and O. Dumbrajs, "Calculation of eigenmodes of tapered gyrotron resonators," International Journal of Electron., Vol. 60, No. 2, 143-154, 1986.
doi:10.1080/00207218608920768
18. Liu, R. and H. Li, "Study of eigenmodes of coaxial resonators using coupled-wave theory," J. Infrared Milli. Terahertz Waves, Vol. 31, 995-1003, 2010.