Vol. 32
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-09-06
Improving Ccd Performance by the Use of Local Fringe Frequencies
By
Progress In Electromagnetics Research C, Vol. 32, 123-137, 2012
Abstract
Coherent Change Detection (CCD) using multi-temporal Synthetic Aperture Radar (SAR) is one of the most important applications of remote sensing technology. With the advent of high-resolution SAR images, CCD has received a lot of attention. In CCD, the interferometric coherence between two SAR images is evaluated and analyzed to detect surface changes. Unfortunately, the sample coherence estimator is biased, especially for low-coherence values. The consequence of this bias is the apparition of highly coherent pixels inside the changed area. Within this context, the detection performance will considerably degrade, particularly when using high resolution SAR data. In this paper, we propose a new CCD method based on cleaning of coherence inside changed areas, which is characterized by high Local Fringe Frequencies (LFF) values, followed by a space-averaged coherence method. According to the proposed method, the results obtained with Cosmo-SkyMed (CSK) SAR data show an enhancement of change detection performance of about 6% while preserving subtle changes.
Citation
Azzedine Bouaraba, Dirk Borghys, Aichouche Belhadj-Aissa, Marc Acheroy, and Damien Closson, "Improving Ccd Performance by the Use of Local Fringe Frequencies," Progress In Electromagnetics Research C, Vol. 32, 123-137, 2012.
doi:10.2528/PIERC12070305
References

1. Zebker, H. A., "Decorrelation in interferometric radar echoes," IEEE Trans. Geosci. Remote Sens.,, Vol. 30, No. 5, 950-959, 1992.
doi:10.1109/36.175330

2. Rignot, E. J., "Change detection techniques for ERS-1 SAR data," IEEE Trans. Geosci. Remote Sens., Vol. 31, No. 4, 896-906, 1993.
doi:10.1109/36.239913

3. Corr, D. G., "Coherent change detection of vehicle movements," Proc. IGARSS, Vol. 5, 2451-2453, 1998.

4. Touzi, R., "Coherence estimation for SAR imagery," IEEE Trans. Geosci. Remote Sens., Vol. 37, No. 1, 135-149, 1999.
doi:10.1109/36.739146

5. Preiss, M., "Detecting scene changes using synthetic aperture radar interferometry," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 8, 2041-2054, 2006.
doi:10.1109/TGRS.2006.872910

6. Sabry, R., "A new coherency formalism for change detection and phenomenology in SAR imagery: A field approach ," IEEE Geosc. and Remote Sens. Letters, Vol. 6, No. 3, 458-462, 2009.
doi:10.1109/LGRS.2009.2016359

7. Oishi, N., "A coherence improvement technique for coherent change detection in SAR interferometry," Proc. of the 6th European Radar Conference, Rome, Italy, Sep. 30-Oct. 2, 2009.

8. Phillips, R. D., "Clean: A false alarm reduction method for SAR CCD," 2011 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 1365-1368, May 2011.
doi:10.1109/ICASSP.2011.5946666

9. Bouaraba, A., A. Younsi, A. Belhadj Aissa, M. Acheroy, N. Milisavljevic, and D. Closson , "Robust techniques for coherent change detection using Cosmo-SkyMed SAR images," Progress In Electromagnetics Research M, Vol. 22, 219-232, 2012.
doi:10.2528/PIERM11110707

10. Martinez, C. L., "Coherence estimation in synthetic aperture radar data based on speckle noise modeling," Applied Optics, Vol. 46, No. 4, 544-558, 2007.
doi:10.1364/AO.46.000544

11. Bamler, R., "Synthetic aperture radar interferometry," Inverse Problems, Vol. 14, No. 2, 1-54, 1998.
doi:10.1088/0266-5611/14/4/001

12. Lee, J. S., "Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery," IEEE Trans. Geosci. Remote Sens., Vol. 32, No. 5, 1017-1028, 1994.
doi:10.1109/36.312890

13. Trouve, E., "Improving phase unwrapping techniques by the use of local frequency estimates," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 6, 1963-1972, 1998.
doi:10.1109/36.729368

14. Vasile, G., "High-resolution SAR interferometry: Estimation of local frequencies in the context of alpine glaciers," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 4, 1079-1090, 2008.
doi:10.1109/TGRS.2007.912713

15. Suo, Z., "A new strategy to estimate local fringe frequencies for InSAR phase noise reduction ," IEEE Trans. Geosci. Remote Sens. Lett., Vol. 7, No. 40, 771-775, 2010.
doi:10.1109/LGRS.2010.2047935

16. Spagnolini, U., "2-D phase unwrapping and instantaneous frequency estimation," IEEE Trans. Geosci. Remote Sens., Vol. 33, No. 5, 579-589, 1995.
doi:10.1109/36.387574

17. Trouve, E., "Fringe detection in noisy complex interferograms," Applied Optics, Vol. 35, No. 20, 3799-3806, 1996.
doi:10.1364/AO.35.003799