Vol. 32
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-09-09
A Compact Tri-Band Antenna Design Using Boolean Differential Evolution Algorithm
By
Progress In Electromagnetics Research C, Vol. 32, 139-149, 2012
Abstract
A compact tri-band slot antenna based on a mesh-grid structure, which is suitable for WLAN/WiMAX applications, is presented. The proposed antenna is optimized by a Boolean differential evolution algorithm (BDE). Then an experimental prototype is fabricated and measured. Results of simulation and measurements indicate that the proposed antenna has |S11|<-10dB in the three chosen frequency bands from 2.35 to 2.85 GHz, from 3.1 to 4.4 GHz and from 4.8 GHz to 5.85 GHz, which covers WLAN bands (2.4/5.2/5.8 GHz) and the WiMAX bands (2.5/3.5/5.5 GHz), respectively. In addition, good radiation performances such as omnidirectional and doughnut-shaped directivity and reasonable gain over the operating bands have been obtained. This example also demonstrates the applicability of the BDE/MOM optimization algorithm to efficient and in potential automated method for the antenna design.
Citation
Dong Li, Fu-Shun Zhang, and Jian-Hong Ren, "A Compact Tri-Band Antenna Design Using Boolean Differential Evolution Algorithm," Progress In Electromagnetics Research C, Vol. 32, 139-149, 2012.
doi:10.2528/PIERC12070204
References

1. Li, D., F.-S. Zhang, Z.-N. Zhao, L.-T. Ma, and X. N. Li, "A compact CPW-FED koch snowflake fractal antenna for WLAN/WiMAX applications," Progress In Electromagnetic Research C, Vol. 28, 143-153, 2012.
doi:10.2528/PIERC12022106

2. Storn, R. and K. Price, "Differential evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces,", Technical Report TR-95-012, Berkeley, CA, 1995.

3. Storn, R. and K. Price, "Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces," J. Global Optim., Vol. 11, 341-359, 1997.
doi:10.1023/A:1008202821328

4. Price, K., R. Storn, and J. A. Lampinen, Differential Evolution: A ractical Approach to Global Optimization, 1st Edition, Springer, New York, 2005, ISBN: 3540209506.

5. Kurup, D. G., M. Himidi, and A. Rydberg, "Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm ," IEEE Trans. Antennas Propag., Vol. 51, 2210-2217, 2003.
doi:10.1109/TAP.2003.816361

6. Michalski, K. A., "Electromagnetic imaging of elliptical-cylindrical conductors and tunnels using a differential evolution algorithm," Microwave Opt. Technol. Lett., Vol. 28, 164-169, 2001.
doi:10.1002/1098-2760(20010205)28:3<164::AID-MOP5>3.0.CO;2-D

7. Yidiz, C., A. Akdagli, and M. Turkmen, "Simple and accurate synthesis formulas obtained by using a differential evolution algorithm for coplanar strip lines," Microwave Opt. Technol. Lett., Vol. 48, 1133-1137, 2006.
doi:10.1002/mop.21559

8. Greenwood, G. W., "Using differential evolution for a subclass of graph theory problems," IEEE Trans. Evol. Comput., Vol. 13, 190-1192, 2009.
doi:10.1109/TEVC.2009.2026000

9. Zhang, L., Y. C. Jiao, Z. B. Weng, and F. S. Zhang, "Design of planar thinned arrays using a Boolean differential evolution algorithm," IET Microwave Antennas Propag., Vol. 4, 2172-2178, 2010.
doi:10.1049/iet-map.2009.0630

10. Choo, H. and H. Ling, "Design of broadband and dual-band microstrip antennas on a high-dielectric substrate using a genetic algorithm," IEE Proc. Microwave Antennas Propag., Vol. 150, 137-142, 2003.
doi:10.1049/ip-map:20030291

11. Kerkhoff, A. J., R. L. Rogers, and H. Ling, "Design and analysis of planar monopole antennas using a genetic algorithm approach," IEEE Trans. Antennas Propag., Vol. 52, 2709-2718, 2004.
doi:10.1109/TAP.2004.834429

12. Ohira, M., H. Deguchi, M. Tsuji, and H. Shigesawa, "Multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique," IEEE Trans. Antennas Propag., Vol. 52, 2925-2931, 2004.
doi:10.1109/TAP.2004.835289

13. Johnson, J. M. and V. Rahmat-Samii, "Genetic algorithms in engineering electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, 7-21, 1997.
doi:10.1109/74.632992

14. Johnson, J. M. and V. Rahmat-Samii, "Genetic algorithms in engineering electromagnetics," IEEE Trans. Antennas Propag., Vol. 39, 7-21, 1997.
doi:10.1109/74.632992

15. Liu, X. F., X. F., Y. B. Chen, Y. C. Jiao, and F. S. Zhang, "Modified particle swarm optimization for patch antenna design based on IE3D," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 3, 1819-1828, 2007.