Vol. 31
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-07-27
A Second-Order BPF Using a Miniaturized-Element Frequency Selective Surface
By
Progress In Electromagnetics Research C, Vol. 31, 229-240, 2012
Abstract
A new type of low-profile frequency selective surface (FSS) with an overall thickness of λ/40 and a second-order band pass frequency response is presented. The proposed FSS is composed of two metal layers, separated by a thin dielectric substrate. Each layer is a two-dimensional periodic structure with sub-wavelength periodic unit cells. By printing the same topology on each side of the substrate, a second-order frequency response is realized. To provide a physical insight into the operating mechanism, equivalent circuit networks are also investigated in each step of design procedure. Using the proposal technique, low profile and reduced sensitivity to angle of incident wave for both TE and TM polarizations are obtained and the overall thickness of the substrate is fairly thin. FSS samples are designed, fabricated, and installed in waveguide operating at X-band and a good agreement between the simulated and measured results is achieved.
Citation
Omid Manoochehri, Seyyedpayam Abbasiniazare, Amir Torabi, and Keyvan Forooraghi, "A Second-Order BPF Using a Miniaturized-Element Frequency Selective Surface," Progress In Electromagnetics Research C, Vol. 31, 229-240, 2012.
doi:10.2528/PIERC12051014
References

1. Munk, B., Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, New York, 2000.
doi:10.1002/0471723770

2. Islam, S., J. Stiens, G. Poesen, R. Vounckx, J. Peeters, I. Bogaert, D. De Zutter, and W. De Raedt, "Simulation and experimental verification of W-band finite frequency selective surfaces on infinite background with 3D full wave solver nspwmlfma," Progress In Electromagnetics Research, Vol. 101, 189-202, 2010.
doi:10.2528/PIER09122104

3. Zhang, J.-C., Y.-Z. Yin, and J.-P. Ma, "Design of narrow band-pass frequency selective surfaces for millimeter wave applications," Progress In Electromagnetics Research, Vol. 96, 287-298, 2009.
doi:10.2528/PIER09081702

4. Martinez-Lopez, R., J. Rodriguez-Cuevas, A. E. Martynyuk, and J. I. Martinez Lopez, "An active ring slot with RF MEMS switchable radial stubs for reconfigurable frequency selective surface applications," Progress In Electromagnetics Research, Vol. 128, 419-440, 2012.

5. Munk, B., Finite Antenna Arrays and FSS, Wiley-Interscience, New York, 2003.
doi:10.1002/0471457531

6. Huang, J., T. Wu, and S. Lee, "Tri-band frequency selective surface with circular ring elements," IEEE Trans. on Antennas and Propagat., Vol. 42, 166-175, 1994.
doi:10.1109/8.277210

7. Li, H., B.-Z. Wang, G. Zheng, W. Shao, and L. Guo, "A reflectarray antenna backed on FSS for low RCS and high radiation performances," Progress In Electromagnetics Research C, Vol. 15, 145-155, 2010.
doi:10.2528/PIERC10070303

8. Lima, A. C. D. C. and E. A. Parker, "Fabry-Perot approach to the design of double layer FSS," IEEE Proc. Microwave Antennas Propagat., Vol. 143, 157-162, 1996.
doi:10.1049/ip-map:19960236

9. Munk, B., R. Kouyoumjian, and L. Peters Jr., "Reflection properties of periodic surfaces of loaded dipoles," IEEE Trans. on Antennas and Propagat., Vol. 19, 612-617, Sep. 1971.
doi:10.1109/TAP.1971.1139995

10. Monavar, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using Jerusalem cross-shaped frequency microstrip patch antenna using Jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.
doi:10.2528/PIER11051305

11. Sarabandi, K. and N. Behdad, "A frequency selective surface with miniaturized elements," IEEE Trans. on Antennas and Propagat., Vol. 55, 2007.
doi:10.1109/TAP.2007.895567

12. Behdad, N. and M. Al-Joumayly, "A low-profile third-order band-pass frequency selective surface," IEEE Trans. on Antennas and Propagat., Vol. 57, 2009.
doi:10.1109/TAP.2008.2011202

13. Teo, P., et al. "Frequency-selective surfaces for GPS and DCS1800 mobile communication. 1. Quad-layer and single-layer FSS design," Microwaves, Antennas & Propagation, IET, Vol. 1, 314-321, 2007.
doi:10.1049/iet-map:20050265

14. Behdad, N., "A second-order band-pass frequency selective surface using nonresonant subwavelength periodic structure," Microwave Opt. Technol. Lett., Vol. 50, 1639-1643, 2008.
doi:10.1002/mop.23445

15. Pirhadi, A., et al. "Analysis and design of dual band high directive EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201

16. Guo, C., et al. "A novel dualband frequency selective surface with periodic cell perturbation," Progress In Electromagnetics Research B, Vol. 9, 137-149, 2008.
doi:10.2528/PIERB08071302

17. Gustafsson, M. and S. Nordebo, "Bandwidth, Q factor, and resonance models of antennas," Progress In Electromagnetics Research, Vol. 62, 1-20, 2006.
doi:10.2528/PIER06033003

18. Langley, R. J. and E. A. Parker, "Equivalent-circuit model for arrays of square loops," Electron. Letters, Vol. 18, 294-296, 1982.
doi:10.1049/el:19820201

19. Pozar, D., Microwave Engineering, John Wiley & Sons, Wiley, New York, 2008.

20. Marcuvitz, N., Waveguide Handbook, Boston Technical Publishers, Lexington, MA, 1964.