Vol. 28
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-03-23
An Effective Wideband Spectrum Sensing Method Based on Sparse Signal Reconstruction for Cognitive Radio Networks
By
Progress In Electromagnetics Research C, Vol. 28, 99-111, 2012
Abstract
Wideband spectrum sensing is an essential functionality for cognitive radio networks. It enables cognitive radios to detect spectral holes over a wideband channel and to opportunistically use under-utilized frequency bands without causing harmful interference to primary networks. However, most of the work on wideband spectrum sensing presented in the literature employ the Nyquist sampling which requires very high sampling rates and acquisition costs. In this paper, a new wideband spectrum sensing algorithm based on compressed sensing theory is presented. The proposed method gives an effective sparse signal representation method for the wideband spectrum sensing problem. Thus, the presented method can effectively detect all spectral holes by finding the sparse coefficients. At the same time, the signal sampling rate and acquisition costs can be substantially reduced by using the compressive sampling technique. Simulation results testify the effectiveness of the proposed approach even in low signal-to-noise (SNR) cases.
Citation
Fulai Liu, Shouming Guo, Qingping Zhou, and Ruiyan Du, "An Effective Wideband Spectrum Sensing Method Based on Sparse Signal Reconstruction for Cognitive Radio Networks," Progress In Electromagnetics Research C, Vol. 28, 99-111, 2012.
doi:10.2528/PIERC12021604
References

1. Federal Communications Commission, "Spectrum policy task force report,", 2002.
doi:10.1109/98.788210

2. Mitola, , J., G. Q. Maguire, and , "Cognitive radio: Making software radios more personal," IEEE Personal Communications, Vol. 6, No. 4, 13-18, 1999.
doi:10.1002/wcm.732

3. Haykin, S., , "Dynamic spectrum management for cognitive radio: An overview," Wireless Communications and Mobile Computing, Vol. 9, No. 11, 1447-1459, , 2009..

4. Sahai, , A., D. Cabric, and , "A tutorial on spectrum sensing: Fundamental limits and practical challenges," IEEE DySPAN , 2005.
doi:10.1109/TSP.2008.2008540

5. Quan, Z., S. Cui, A. H. Sayed, and H. V. Poor, , "Optimal multiband joint detection for spectrum-sensing in cognitive radio networks," IEEE Transactions on Signal Processing, Vol. 57, No. 3, 1128-1140, 2009..

6. Paysarvi-Hoseini, P., N. C. Beaulieu, and , "On the e±cient implementation of the multiband joint detection framework for wideband spectrum sensing in cognitive radio networks," IEEE Vehicular Technology Conference, , 1-6, 2011.
doi:10.1109/TSP.2010.2096220

7. Paysarvi-Hoseini, , P. and N. C. Beaulieu, "Optimal wideband spectrum sensing framework for cognitive radio systems," IEEE Transactions on Signal Processing, Vol. 59, No. 3, 1170-1182, 2011.
doi:10.1109/TIT.2006.871582

8. Donoho, , D., , "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, , 2006..
doi:10.1109/MSP.2007.914731

9. Candes, , E. J., M. B. Wakin, and , "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, 2008.

10. Tian, , Z., G. B. Giannakis, and , "Compressed sensing for wideband cognitive radios," IEEE ICASSP, Vol. 4, 1357-1360, , 2007..
doi:10.1155/2010/730509

11. Yu, , Z. Z., X. Chen, S. Hoyos, B. M.Sadler, M. J. X. Gong, and C. L. Qian, "Mixed-signal parallel compressive spectrum sensing for cognitive radios ," International Journal of Digital Multimedia Broadcasting, Vol. 2010, 1-10, 2010..
doi:10.1109/JSTSP.2010.2055037

12. Zeng, , F. Z., C. Li, and Z. Tian, "Distributed compressive spectrum sensing in cooperative multihop cognitive networks," IEEE Journal of Selected Topics in Signal Processing, Vol. 5, No. 1, 37-48, , 2011.
doi:10.1109/TWC.2011.071411.101929

13. Zhang, , Z. H., Z. Han, H. S. Li, D. P. Yang, and C. X. Pei, , "Belief propagation based cooperative compressed spectrum sensing in wideband cognitive radio networks," IEEE Transactions on Wireless Communications, Vol. 10, No. 9, 3020-3031, , 2011..
doi:10.1016/j.sigpro.2009.08.013

14. Liu, , F. L., J. K. Wang, and R. Y. Du, "Unitary-JAFE algorithm for joint angle-frequency estimation based on Frame-Newton method," Signal Processing,, Vol. 3, No. 90, 809-820, 2010.
doi:10.1109/IWSOC.2006.348224

15. Kirolos, S., T. Ragheb, J. Laska, M. E. Duarte, Y. Massoud and R. G. Baraniuk, "Practical issues in implementing analog-to-information converters," International Workshop on System on Chip for Real Time Applications, , 141-146, 2006.

16. Liu, , F. L., J. K. Wang, R. Y. Du, L. Peng, and P. P. Chen, "A second-order cone programming approach for robust downlink beamforming with power control in cognitive radio networks," Progress In Electromagnetics Research M, Vol. 18, 221-231, 2011.

17. Grant, M., S. Boyd, and , "CVX: Matlab software for disciplined convex programming,", April 2010..
doi:http://cvxr.com/cvx,

18. Malioutov, , D. M., M. Cetin, and A. S. Willsky, "A sparse signal reconstruction perspective for source localization with sensor arrays," IEEE Transactions on Signal Processing, Vol. 53, No. 8, 3010-3022, 2005.

19. Zeng, , Y. H., Y. C. Liang, and , "Maximum-minimum eigenvalue de-tection for cognitive radio," Proceedings of the 18th International Symposium on Personal, Indoor and Mobile Radio Communications,, Septembe 2.