Vol. 26
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-12-24
Experimental Validation of Linear Aperiodic Array for Grating Lobe Suppression
By
Progress In Electromagnetics Research C, Vol. 26, 193-203, 2012
Abstract
In this paper, a deterministic strategy to generate the aperiodicity, based on three geometric taper distributions is studied and validated. The method is applied to study arrays with average inter-elements spacing larger than a wavelength, exhibiting a reduction of the grating lobe level and requiring lower aperture size against a periodic structure with same directivity. Finally, a microstrip patch aperiodic array has been designed, manufactured and measured for an experimental validation of the concept, obtaining good agreement between simulated and measured radiation patterns. This manufactured antenna demonstrates experimentally the reduction of the grating lobes with a similar level to the side lobe.
Citation
S. Suarez, German Leon Fernandez, Manuel Arrebola, Luis Herran Ontanon, and Fernando Las Heras Andres, "Experimental Validation of Linear Aperiodic Array for Grating Lobe Suppression," Progress In Electromagnetics Research C, Vol. 26, 193-203, 2012.
doi:10.2528/PIERC11110706
References

1. Mailloux, R. J., "Phased array theory and technology," Proc. IEEE, Vol. 70, No. 3, Mar. 1982.
doi:10.1109/PROC.1982.12285

2. Fuchs, J.-J. and B. Fuchs, "Synthesis of optimal narrow beam low sidelobe linear array with constrained length," Progress In Electromagnetics Research B, Vol. 25, 315-330, 2010.
doi:10.2528/PIERB10070607

3. Ismail, T. H., M. J. Mismar, and M. M. Dawoud, "Linear array pattern synthesis for wide band sector nulling," Progress In Electromagnetics Research, Vol. 21, 91-101, 1999.
doi:10.2528/PIER98040900

4. Perez Lopez, J. R. and J. Basterrechea, "Hybrid particle swarm-based algorithms and their application to linear array synthesis," Progress In Electromagnetics Research, Vol. 90, 63-74, 2009.
doi:10.2528/PIER08122212

5. Ishimaru, A., "Theory of unequally-spaced arrays," IEEE Trans. Antennas Propagat., 691-702, 1962.

6. Toyama, N., "Aperiodic array consisting of subarrays for use in small mobile earth stations," IEEE Trans. Antennas Propagat., Vol. 53, No. 6, 2004-2010, Jun. 2005.
doi:10.1109/TAP.2005.848486

7. Ayestarán, R. G., F. Las-Heras, and J. A. Martínez, "Non uniform-antenna array synthesis using neural networks," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1001-1011, 2007.

8. Tokan, F. and F. Gunes, "The multi-objective optimization of non-uniform linear phased arrays using the genetic algorithm," Progress In Electromagnetics Research B, Vol. 17, 135-151, 2009.
doi:10.2528/PIERB09072309

9. Yang, S., Y. Liu, and Q. H. Liu, "Combined strategies based on matrix pencil method and Tabu search algorithm to minimize elements of non-uniform antenna array," Progress In Electromagnetics Research B, Vol. 18, 259-277, 2009.
doi:10.2528/PIERB09092408

10. Cen, L., W. Se, Z. L. Yu, S. Rahardja, and W. Cen, "Linear sparse array synthesis with minimum number of sensors," IEEE Trans. Antennas Propagat.,, Vol. 58, No. 3, 720-726, Mar. 2010.
doi:10.1109/TAP.2009.2039292

11. Sanchez, J., D. H. Covarrubias-Rosales, and M. A. Panduro, "A synthesis of unequally spaced antenna arrays using Legendre functions," Progress In Electromagnetics Research M, Vol. 7, 57-69, 2009.
doi:10.2528/PIERM09032305

12. Gregory, M. D., J. S. Petko, T. G. Spence, and D. H. Werner, "Nature-inspired design techniques for ultra-wideband aperiodic antenna arrays," IEEE Antennas Propagat. Mag., Vol. 52, No. 3, Jun. 2010.
doi:10.1109/MAP.2010.5586571

13. Bray, M. G., D. H.Werner, D. W. Boeringer, and D. W. Machuga, "Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning," IEEE Trans. Antennas Propagat., Vol. 50, No. 12, 1732-1742, Dec. 2002.
doi:10.1109/TAP.2002.807947

14. Barott, W. C. and P. G. Steffes, "Grating lobe reduction in aperiodic linear arrays of physically large antennas," IEEE Trans. Antennas Wireless Propagat. Letters, Vol. 8, 406-408, 2009.
doi:10.1109/LAWP.2008.2005364

15. Wang, H., D.-G. Fang, and Y. L. Chow, "Grating lobe reduction in a phased array of limited scanning," IEEE Trans. Antennas Propagat., Vol. 56, No. 6, 1581-1586, Jun. 2008.
doi:10.1109/TAP.2008.923354

16. Toso, G., C. Mangenot, and A. G. Roederer, "Sparse and hinned arrays for multiple beam satellite applications," 29th ESA Antenna Workshop, Noordwijk, The Netherlands, Apr. 18-20, 2007.

17. Willey, R., "Space tapering of linear and planar arrays," IEEE Antennas Propagat. Mag., Vol. 10, No. 4, 369-377, Jul. 1962.

18. Doyle, W., "On approximating linear array factors," RAND Corp. Mem. RM-3530-PR, Feb. 1963.

19. Toso, G. and P. Angeletti, "Aperiodic linear arrays for rectangular shaped beams," 3rd European Conference on Antennas and Propagation, EuCAP, Mar. 23-27, 2009..

20. Angeletti, P. and G. Toso, "Aperiodic arrays for space applications: A combined amplitude/density synthesis approach," 3rd European Conference on Antennas and Propagation, EuCAP, Mar. 23-27, 2009.

21. Bucci, O. M., M. D'Urso, T. Isernia, P. Angeletti, and G. Toso, "Deterministic synthesis of uniform amplitude sparse arrays via new density taper techniques," IEEE Trans. Antennas Propagat., Vol. 58, No. 6, 1949-1957, Jun. 2010.
doi:10.1109/TAP.2010.2046831

22. Bhattacharyya, A., Phased Array Antennas: Floquet Analysis, Synthesis, BFNs and Active Arrays Systems, John Wiley, 2006.

23. , , , Agilent's Momentum Software, www.agilent.com/find/eesof-ads.

24. , , , Antem LAB, www.tsc.uniovi.es/lab ant EM/index.html.

25. , , , Ansoft's HFSS Software, www.ansoft.com/products/hf/hfss.