Vol. 26
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-12-06
Matching Network Using One Control Element for Widely Tunable Antennas
By
Progress In Electromagnetics Research C, Vol. 26, 29-42, 2012
Abstract
A tunable impedance matching network is applied to achieve very widely tunable antennas, whose geometries are independent and unchanged to simplify the design. The attached matching network as the antenna feeding network enables any unspecified UWB antenna to tune the operation frequency continuously with high selectivity by merely one single control. This is quite different from filter-based concept which is complicated to co-design and implement a tiny narrow band tunable filter over wide frequency ranges and very difficult to control with one element. And also the design, adjustment, and optimization of the matching network are much simpler, quicker, and lower cost than geometry-modified antenna design. The analysis of precise high frequency circuit models is used predict the performance in simulation. Fabricated prototype antennas are measured by using horn antennas to validate the antenna performance. The tunable frequency ranges from 1.8 GHz to 2.8 GHz (155%) and 2.19 GHz to 3.86 GHz (176%). Moreover, compared to other matching network-based solutions, non-ideal effects in undesired bands other than the operation frequency band are suppressed, so the performance is improved. One wide-tuning antenna using one single element to control can be carried out by tunable matching networks without complicated designs.
Citation
Chieh-Sen Lee, and Chin-Lung Yang, "Matching Network Using One Control Element for Widely Tunable Antennas," Progress In Electromagnetics Research C, Vol. 26, 29-42, 2012.
doi:10.2528/PIERC11102004
References

1. Nguyen, V.-A., M. T. Dao, Y. T. Lim, and S. O. Park, "A compact tunable internal antenna for personal communication handsets," IEEE Antennas Wireless Propagat. Lett., Vol. 7, 2008.

2. Melde, K. L., H.-J. Park, H.-H. Yeh, B. Fankem, Z. Zhou, and W. R. Eisenstadt, "Software defined match control circuit integrated with a planar inverted-F antenna," IEEE Trans. on Antennas and Propagation, Vol. 58, 3884-3890, 2010.
doi:10.1109/TAP.2010.2078442

3. Sheta, A.-F. and S. F. Mahmoud, "A widely tunable compact patch antenna," IEEE Antennas Wireless Propagat. Lett., Vol. 7, 40-42, 2008.
doi:10.1109/LAWP.2008.915796

4. Hai, J., M. Patterson, C. Zhang, and G. Subramanyam, "Frequency tunable microstrip patch antenna using ferroelectric thin film varactor," Aerospace & Electronics Conference (NAECON), Proceedings of the IEEE 2009 National, 248-250, 2009.

5. Yang, S.-L. S., A. A. Kishk, and K.-F. Lee, "Frequency reconfigurable U-slot microstrip patch antenna," IEEE Antennas Wireless Propagat. Lett., Vol. 7, 127-129, 2008.
doi:10.1109/LAWP.2008.921330

6. Nikolaou, S., R. Bairavasubramanian, C. Lugo, Jr., I. Carrasquillo, D. C. Thompson, G. E. Ponchak, J. Papapolymerou, and M. M. Tentzeris, "Pattern and frequency reconfigurable annular slot antenna using PIN diodes," IEEE Trans. on Antennas and Propagation, Vol. 54, No. 2, 439-448, Feb. 2006.
doi:10.1109/TAP.2005.863398

7. Yang, C.-L., "Novel high selective band-tunable antennas over ultra-wide ranges using reconfigurable matching network," IEEE Antennas and Propagation Society International Symposium, 1-4, Jun. 2009.
doi:10.1109/APS.2009.5171766

8. Nieuwoudt, A., J. Kawa, and Y. Massoud, "Automated design of tunable impedance matching networks for reconfigurable wireless applications," 45th ACM/IEEE Design Automation Conference, 498-503, 2008.

9. Hoarau, C., N. Corrao, J.-D. Arnould, P. Ferrari, and P. Xavier, "Complete design and measurement methodology for a tunable RF impedance-matching network," IEEE Trans. on Microwave Theory and Techniques, Vol. 56, No. 11, 2620-2627, Nov. 2008.
doi:10.1109/TMTT.2008.2006105

10. Schmidt, M., E. Lourandakis, A. Leidl, S. Seitz, and R.Weigel, "A comparison of tunable ferroelectric PI and T-matching networks," Proceedings of the 37th European Microwave Conference, 98-101, 2007.

11. Thompson, M. and J. K. Fidler, "Determination of the impedance matching domain of passive LC ladder networks: Theory and implementation," J. Franklin Institute, Vol. 333(B), No. 2, 141-155, 1996.

12. Sun, Y. and J. K. Fidler, "Design method for impedance matching networks," IEE Proceedings Circuits, Devices and Systems, Vol. 143, 186-194, 1996.
doi:10.1049/ip-cds:19960566

13. Stauffer, G. H., "Finding the lumped element varactor diode model," High Frequency Electronics, Summit Technical Media, 2003.

14. Yuliang, Z., H. Maune, A. Giere, M. Sazegar, and R. Jakoby, "Constraints on effcient control of tunable impedance matching network based on barium-strontium-titanate thick-film varactors," 38th European Microwave Conference, 805-808, 2008.