Vol. 26
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-12-05
250 MHz to 30 GHz , Unilateral Circuitmodel for Ingap/GaAs Hbt
By
Progress In Electromagnetics Research C, Vol. 26, 1-12, 2012
Abstract
A unilateral circuit model, which precisely predicts small signal response over a wide range of frequencies and bias points, is quantitatively analyzed and presented. The shortfall of current unilateral assumption and transformation technique is presented. A complete and explicit analysis is provided to develop a compact unilateral circuit model. The model is intended to predict input reflection, forward transmission and output reflection coefficients over wide range of frequencies. The technique is validated by transforming bilateral a small signal model of 3 x 3 μm x 40 μm, InGaP/GaAs HBT into its unilateral equivalent over the frequency range of 250 MHz to 30 GHz. The accuracy of the technique is corroborated at various bias conditions; collector current from 3 mA to 150 mA and collector-emitter voltage from 1 V to 5 V. Simulated results show very good agreement between small signal responses of transformed unilateral and bilateral circuit models.
Citation
Than Tun Thein, Choi Look Law, and Kai Fu, "250 MHz to 30 GHz , Unilateral Circuitmodel for Ingap/GaAs Hbt," Progress In Electromagnetics Research C, Vol. 26, 1-12, 2012.
doi:10.2528/PIERC11101702
References

1. Van Der Heijden, M., et al. "On the optimum biasing and input out-of-band terminations of linear and power effcient class-AB bipolar RF amplifiers," IEEE Proceedings of the Meeting on Bipolar/BiCMOS Circuits and Technology, 2004.

2. El Maazouzi, L., A. Mediavilla, and P. Colantonio, "A contribution to linearity improvement of a highly effcient PA for WIMAX applications," Progress In Electromagnetics Research, Vol. 119, 59-84, 2011.
doi:10.2528/PIER11051602

3. Iwamoto, M., et al. "Optimum bias conditions for linear broad-band InGaP/GaAs HBT power amplifiers," IEEE Trans. Micro. Theory Tech., Vol. 50, No. 12, 2954-2962, 2002.
doi:10.1109/TMTT.2002.805135

4. Van Der Heijden, M. P., et al. "Theory and design of an ultra-linear square-law approximated LDMOS power amplifier in class-AB operation," IEEE Trans. Micro. Theory Tech., Vol. 50, No. 9, 2176-2184, 2002.
doi:10.1109/TMTT.2002.802332

5. Karkhaneh, H., A. Ghorbani, and H. Amindavar, "Modeling and compensating memory effect in high power amplifier for OFDM system," Progress In Electromagnetics Research, Vol. 3, 183-194, 2008.

6. Olson, S., B. Thompson, and B. Stengel, "Distributed amplifier with narrowband amplifier effciency," IEEE International Microwave Simposium, 155-158, Honolulu, USA, 2007.

7. Sheinman, B. and C. Ritter, "Base charge dynamics of abrupt base-emitter junction HBTs and its representation in transistor models," IEEE Trans. Electron Devices, Vol. 54, No. 4, 632-636, 2007.
doi:10.1109/TED.2007.892363

8. Zhao, Y., et al. "Linearity improvement of HBT-based Doherty power amplifiers based on a simple analytical model," IEEE Trans. Micro. Theory Tech., Vol. 54, No. 12, 4479-4488, 2006.
doi:10.1109/TMTT.2006.883245

9. Lee, K., et al. "Direct parameter extraction of SiGe HBTs for the VBIC bipolar compact model," IEEE Trans. Electron Devices, Vol. 52, No. 3, 375-384, 2005.
doi:10.1109/TED.2005.843906

10. Yang, T. R., et al. "SiGe HBT's small-signal Pi modeling," IEEE Trans. Micro. Theory Tech., Vol. 55, No. 7, 1417-1424, 2007.
doi:10.1109/TMTT.2007.900214

11. Olvera-Cervantes, J. L., et al. "A new analytical method for robust extraction of the small-signal equivalent circuit for SiGe HBTs operating at cryogenic temperatures," IEEE Trans. Micro. Theory Tech., Vol. 56, No. 3, 568-574, 2008.
doi:10.1109/TMTT.2008.916917

12. Spirito, M. and et al, "Experimental procedure to optimize out-of- band terminations for highly linear and power effcient bipolar class-AB RF amplifiers," IEEE Proceedings of the Meeting on Bipolar/BiCMOS Circuits and Technology, 112-115, 2005.

13. Gray, P. R., et al. Analysis and Design of Analog Integrated Circuits, Wiley, New York, USA, 1993.

14. Everard, J., J. Wiley, and I. Sons, Fundamentals of RF Circuit Design, Wiley Online Library, 2001.
doi:10.1002/0470841753

15. Paoloni, C. and S. D'Agostino, "An HBT unilateral model to design distributed amplifiers," IEEE Trans. Micro. Theory Tech., Vol. 47, No. 6, 795-798, 1999.
doi:10.1109/22.769352

16. Reisch, M., High-frequency Bipolar Transistors: Physics, Modelling, Applications, Springer Verlag, 2003.
doi:10.1007/978-3-642-55900-6

17. Tu, H. Y., et al. "An analysis of the anomalous dip in scattering parameter S22 of InGaP-GaAs heterojunction bipolar transistors (HBTs)," IEEE Trans. Electron Devices, Vol. 49, No. 10, 1831-1833, 2002.
doi:10.1109/TED.2002.802658

18. Lu, S. S., et al. "The origin of the kink phenomenon of transistor scattering parameter S22," IEEE Trans. Micro. Theory Tech., Vol. 49, No. 2, 333-340, 2001.
doi:10.1109/22.903094