Vol. 25
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-11-14
A Magnetic Field Tunable Yttrium Iron Garnet Millimeter-Wave Dielectric Phase Shifter: Theory and Experiment
By
Progress In Electromagnetics Research C, Vol. 25, 145-157, 2012
Abstract
A magnetically tunable passive narrow-band split-mode mm-wave phase shifter based on dielectric resonance in yttrium iron garnet (YIG) is investigated. The novelty here is the demonstration of a phase shifter in the frequency region between two split dielectric resonances in YIG. It is shown that, under certain conditions, the differential phase shift from the split modes add up, resulting in a larger phase shift than for a single mode phase shifter. Two prototype phase shifters operating in the U- and W-bands at frequencies much higher than ferromagnetic resonance (FMR) in YIG have been designed and characterized. Phase shifts up to 30° with low losses and acceptable standing wave ratio are obtained for moderate bias magnetic fields. Equivalent transmission-line model taking into account coupling between the split resonances is presented and there is reasonable agreement between theory and experiment for both insertion loss and differential phase shift. Suggestions on further improvements of prototype filter characteristics have been outlined.
Citation
Maksym A. Popov, Igor V. Zavislyak, and Gopalan Srinivasan, "A Magnetic Field Tunable Yttrium Iron Garnet Millimeter-Wave Dielectric Phase Shifter: Theory and Experiment," Progress In Electromagnetics Research C, Vol. 25, 145-157, 2012.
doi:10.2528/PIERC11101409
References

1. Romanofsky, , R. R., , "Array phase shifters: Theory and technology," NASA Glenn Research Center, Cleveland, OH, Technical Memorandum NASA/TM|2007-214906, , 2007.
doi:10.1109/22.989957

2. Adam, J. D., L. E. Davis, G. F. Dionne, E. F. Schloemann, and S. N. Stitzer, "Ferrite devices and materials," IEEE Trans. MTT,, Vol. 50, No. 3, , 721-737, , Mar. 2002.

3. Vizard, , D. R., , "Millimeter-wave applications: From satellite communications to security systems," Microwave Journal, , Vol. 49, 22-36, , 2006..

4. Cole, , M. W., W. D. Nothwang, S. Hirsch, E. Ngo, C. Hubbard, and R. G. Greyer, , "High performance thin films for microwave phase shifter applications: Device requirements, material design, and process science considerations," Ceramic Transactions,, Vol. 174, 287-296, 2006.
doi:10.1063/1.1625424

5. Kuanr, B., Z. Celinski, and R. E. Camley, , "Tunable high-frequency band-stop magnetic filters," Appl. Phys. Lett., , Vol. 83, 3969-3971, , 2003..
doi:10.1049/el:20072451

6. He, , P., P. V. Parimi, Y. He, V.G. Harris, and C. Vittoria, , "Tunable negative refractive index metamaterial phase shifter," Electronics Letters, , Vol. 43, No. 25, , 1440-1441, , Dec. 2007..
doi:10.1109/TMAG.2010.2091677

7. Popov, , M., I. Zavislyak, A. Ustinov, and G. Srinivasan, "Sub-Terahertz magnetic and dielectric excitations in hexagonal ferrites," IEEE Trans. on Mag.,, Vol. 47, No. 2, 289-294, Feb. 2011.
doi:10.1088/0957-0233/10/11/305

8. Krupka, , J., S. A Gabelich, K. Derzakowski, and B. M. Pierce, "Comparison of split post dielectric resonator and ferrite disc resonator techniques for microwave permittivity measurements of polycrystalline yttrium iron garnet," Meas. Sci. Technol., Vol. 10, No. 11, , 1004-1008, , Nov. 1999.
doi:10.1109/TMTT.1964.1125753

9. Bosma, , H., , "On stripline Y-circulation at UHF," IEEE Trans. on MTT,, Vol. 12, No. 1, , 61-72, , Jan. 1964.
doi:10.1080/00207219408926018

10. Gibson, , A. A. P., B. M. Dillon, and S. I. Sheikh, , "Applied ¯eld/frequency response of planar gyromagnetic disks," Int. J. Electronics, , Vol. 76, No. 6, , 1073{-1081, , Jun. 1994.
doi:10.1109/22.41001

11. Schieblich, , C., , "Mode charts for magnetized ferrite cylinders," IEEE Trans. on MTT, , Vol. 37, No., No. 10, , 1555-1561, Oct. 1989.
doi:10.1063/1.3607873

12. Popov, , M. A., I. V. Zavislyak, and G. Srinivasan, "Sub-THz dielectric resonance in single crystal yttrium iron garnet and magnetic field tuning of the modes," J. Appl. Phys., Vol. 110, No. 2, Jul. 2011.
doi:10.1002/0470020466

13. Chen, , L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and and, V. K. Varadan, Microwave Electronics. Measurement and Material Characterization,, John Wiley & Sons, Ltd., 2004.
doi: --- Piped Query must contain either 9 (for journals) or 11 (for books/conference proceedings) pipes.

14. Pozar, , D. M., , Microwave Engineering, , 2nd Ed., John Wiley & Sons Inc., , 1998.

15. Ilchenko, , M. E., E. V. Kudinov, and , Ferritovye i Dielectricheckye Resonatory SVCh, , Izdatelstvo Kievskogo Universiteta, 1973.
doi: (in Russian).

16. Ilyinsky, , A. S., G. Y. Slepyan, and A. Y. Slepyan, Propagation, Scattering and Dissipation of Electromagnetic Waves, , 86-90, Peter Peregrinus Ltd., , UK, 1993.

17. Gurevich, , I. V., , Osnovi Raschetov Radiotechnicheskih Cepey, Svyaz, , 1975.
doi: (in Russian)

18. How, , H., C. Vittoria, and , "Microwave phase shifter utilizing nonreciprocal wave propagation," IEEE Trans. on MTT,, Vol. 52, 1813-1819, , Aug. 2004..
doi:10.1103/PhysRevB.5.4707

19. Chiu, , K. W., J. J. Quinn, and , "Magnetoplasma surface waves in metals," Phys. Rev. B, , Vol. 5, No. 12, , 4707-4709, , Jun. 1972..
doi:10.1049/el.2010.3124

20. Popov, , M. A., I. V. Zavislyak, and G. Srinivasan, "Magnetic field tunable 75-110 GHz dielectric phase shifter," Electronics Letters, Vol. 46, No. 8, 569-570, , Apr. 2010..
doi: --- Piped Query must contain either 9 (for journals) or 11 (for books/conference proceedings) pipes.

21. Tatarenko, A. S., G. Srinivasan, and M. I. Bichurin, , "Magnetoelectric microwave phase shifter," Appl. Phys. Lett., , Vol. 88, No. 18, May 2006.
doi:10.1049/el:20010769

22. Nam, , S., A. W. Payne, and I. D. Robertson, "RF and microwave phase shifter using complementary bias techniques," Electronic Letters, , Vol. 37, No. 18, 1124-1125, Aug. 2001.

23. Tsai, , M.-D., A. Natarajan, and , "60 GHz passive and active RF-path phase shifters in silicon," IEEE Radio Frequency Integrated Circuits Symposium (RFIC), , 223-226, 2009.

24. Yu, Y., P. G. M. Baltus, and A. H. M. van Roermund, , "A 60 GHz passive phase shifter," Analog Circuits and Signal Processing , Vol. 1, 47-58, , 2011.
doi:10.2528/PIERB07101903

25. Afrang, , S., B. Yeop Majlis, and , "Small size Ka-band distributed MEMS phase shifters using inductors," Progress In Electromagnetics Research B, Vol. 1, 95-113, , 2008.
doi:10.1063/1.1703091

26. Joseph, , R. I., E. Schlomann, and , "Demagnetizing field in nonellipsoidal bodies," J. Appl. Phys., , Vol. 36, No. 5, , 1579-1593, May 1965..
doi:10.1063/1.1658322

27. Schlomann, , E., , "Microwave behavior of partially magnetized ferrites," J. Appl. Phys., Vol. 41, No. 1, 204-214, , Jan. 1970.
doi:10.1163/156939310790322073

29. Zahwe, O., B. Abdel Samad, B. Sauviac, J. P. Chatelon, M. F. Blanc Mignon, J. J. Rousseau, M. L. Berre, and D. Givord, "YIG thin ¯lm used to miniaturize a coplanar junction circulator ," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 25-32, 2010.
doi:10.2528/PIERL09030604

30. Zahwe, , O., B. Sauviac, and J. J. Rousseau, , "Fabrication nad measurement of a coplanar circulator with 65 ¹m YIG thin ¯lm," Progress In Electromagnetics Research Letters, Vol. 8, 35-41, , 2009.