Vol. 28
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-04-13
Synthesis, Design and Implementation of Ultra-Wideband Impulse Radio Active MMIC Matched Filters
By
Progress In Electromagnetics Research C, Vol. 28, 239-255, 2012
Abstract
In this paper, we present a comprehensive framework from synthesis to implementation of active matched filters for UWB Impulse Radio. The method delays and sums UWB pulses coherently to strengthen the signal over white Gaussian noise. Theoretical analysis shows that the signal peak is maximized against noise, and an arbitrary transfer function could be realized by adjusting filter parameters. To verify the concept, a four-stage matched filter operating in 3-5 GHz with 360 degrees phase delay is demonstrated first. It is implemented in a commercial 2-μm GaAs HBT process and achieves a power gain of 13.8 dB with a 10 dB bandwidth of 1.3 GHz. Based on a similar architecture, another design is presented but with only half of the delay. It has a power gain of 15.9 dB at the center frequency of 4 GHz and a 10 dB bandwidth of 2.3 GHz. An advantage of the proposed method is a precise control of the impulse response that can be matched to either symmetrical or asymmetrical UWB pulses by taking a time domain design approach.
Citation
Jingjing Xia, Choi Look Law, and Yuan Zhou, "Synthesis, Design and Implementation of Ultra-Wideband Impulse Radio Active MMIC Matched Filters," Progress In Electromagnetics Research C, Vol. 28, 239-255, 2012.
doi:10.2528/PIERC11100101
References

1. , , , Ubisense Real-time Location Systems (RTLS), Ubisense, Cambridge, U.K. [Online]. , Available: http://www.ubisense.net/en/rtls-solutions.

2., Time Domain's Ultra Wideband (UWB) Definition and Advantages, Time Domain Corp., Huntsville, AL, [Online]., Available: http://www.timedomain.com.
doi:10.1109/JPROC.2008.2008846

3. , , , Dart UWB Hub & Sensors, Zebra Technologies [Online]. Available: http://www.zebra.com .
doi:10.1109/LAWP.2005.844145

4., DecaWave ScenSor Product Brief, Decawave, Dublin, Ireland, [Online]. Available: http://www.decawave.com/downloads1.html.

5. Kuhn, M. J., M. R. Mahfouz, C. Zhang, B. C. Merkl, and A. E. Fathy, "A system-level simulation framework for UWB localization," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 12, 3527-3537, Dec. 2010.
doi:10.1109/TVT.2009.2021943

6. Dardari, D., A. Conti, U. Ferner, A. Giorgetti, and M. Z. Win, "Ranging with ultrawide bandwidth signals in multipath environments," Proc. IEEE, Vol. 97, No. 2, 404-426, Feb. 2009.

7. Low, Z. N., J. H. Cheong, C. L. Law, W. T. Ng, and Y. J. Lee, "Pulse detection algorithm for line-of-sight (LOS) UWB ranging applications," IEEE Antennas Wireless Propag. Lett., Vol. 4, 63-67, Jun. 2005.

8. Redfield, R., S. Ye, and H. Liu, "High-precision indoor UWB localization: Technical challenges and method," Proc. IEEE Int. Conf. Ultra-wideband, 1-4, Sep. 2010.
doi:10.1109/TMTT.2006.885908

9. Yen, N. Y. and S. L. Su, "Robust matched-filter acquisition for direct-sequence ultrawideband systems," IEEE Trans. Veh. Technol., Vol. 58, No. 8, 4419-4425, Aug. 2009.

10. Brocato, R., E. Heller, J.Wendt, J. Blaich, G.Wouters, E. Gurule, G. Omdahl, and D. Palmer, "UWB communication using SAW correlators," Proc. IEEE Radio and Wireless Symp., 267-270, Sep. 2004.

11. Arnedo, I., I. Arregui, M. Chudzik, A. Lujambio, M. A. G. Laso, T. Lopetegi, J. D. Schwartz, J. Azana, D. V. Plant, and IEEE, "Arbitrary UWB pulse generation and optimum matched-filter reception," Proc. IEEE Int. Conf. Ultra-wideband, 43-48, New York, Sep. 2009.

12. Kawano, Y., Y. Nakasha, K. Yokoo, S. Masuda, T. Takahashi, T. Hirose, Y. Oishi, and K. Hamaguchi, "RF chipset for impulse UWB radar using 0.13-μm InP-HEMT technology," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 12, 4489-4497, Dec. 2006.
doi:10.1109/TIT.1960.1057571

13. Xia, J., C. L. Law, and J. Jiang, "A novel 3-5 GHz active matched filter for impulse radio ultra-wideband," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 7, 458-460, Jul. 2009.

14. Xia, J., C. L. Law, and Y. Zhou, "Synthesis and design of novel active MMIC matched filters for ultrawideband impulse radio," IEEE MTT-S Int. Microw. Symp. Dig., Baltimore, MD, Jun. 2011.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.

15. Xia, J., C. L. Law, Y. Zhou, and K. S. Koh, "3-5 GHz UWB impulse radio transmitter and receiver MMIC optimized for long range precision wireless sensor networks," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 12, 4040-4051, Dec. 2010.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.

16. Turin, G., "An introduction to matched filters," IRE Trans. Inf. Theory, Vol. 6, No. 3, 311-329, Mar. 1960.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.

17. , , , AWR AXIEM Extract Flow White Paper, AWR Corp, [Online]. Available: http://web.awrcorp.com .
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.

18. Fang, C., C. L. Law, J. C. M. Hwang, and J. Xia, "Design and analysis of high-voltage high-efficiency ultra-wideband pulse synthesizer," Progress In Electromagnetics Research C, Vol. 20, 187-201, 2011.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.