Vol. 25
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-10-28
Spurious Modes Reduction in a Patch Antenna Using an EBG-Based Microstrip Transmission Line Filter
By
Progress In Electromagnetics Research C, Vol. 25, 41-54, 2012
Abstract
In this paper, a novel dual planar electromagnetic bandgap (DP-EBG) microstrip structure is investigated to suppress the spurious radiation of the patch antenna. It is demonstrated that the proposed structure achieves a ultra-wide stopband and excellent passband performance within a compact circuit area. Utilizing such special features, two units of the DP-EBG structure are employed in the feed line of patch antenna with the aim of suppressing harmonics and other spurious modes. The calculated and experimental results all verify that the application of this DP-EBG structure not only drastically diminishes spurious radiations of 2nd ~ 6th harmonics in a broad frequency band, but also overcomes some shortages of other EBG microstrip antennas introduced in previous research such as large back radiation or beam squint. Besides that, by adjusting the separation between the DP-EBG structure constructed in the feed line and the patch's bottom edge in a moderate distance, the procedure for designing the EBG patch antenna working on a certain frequency with the goal of reducing spurious radiation is simplified.
Citation
Xiong Yin, Hou Zhang, Xue-Yu Huang, and Hai-Yang Xu, "Spurious Modes Reduction in a Patch Antenna Using an EBG-Based Microstrip Transmission Line Filter," Progress In Electromagnetics Research C, Vol. 25, 41-54, 2012.
doi:10.2528/PIERC11082401
References

1. Deal, , W. R., T. Jung, M. C. Wu, and T. Itoh, "All-optically controlled beam-scanning array for antenna remoting applications,", 1383-1386, June 1998.
doi:10.1109/75.752109

2. Horii, Y., M. Tsutsumi, and , "Harmonic control by photonic bandgap on microstrip patch antenna," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 1, 13-15, 1999.
doi:10.1109/TAP.2005.846775

3. Sung, , Y. J., Y.-S. Kim, and , "An improved design of microstrip patch antennas using photonic bandgap structure," IEEE Transactions on Antennas and Propagation,, Vol. 53, No. 5, 1799-1804, 2005.

4. GonLee, , J., J. HaeLee, and , "Suppression of spurious radiations of patch antennas using split-ring resonators (SRRs)," Microwave and Optical Technology Letters, Vol. 48, No. 2, 284-287, February.
doi:10.1002/mop.22049

5. Mandal, , M. K., P. Mondal, S. Sanyal, and A. Chakrabarty, "An improved design of harmonic suppression for microstrip patch antennas ," Microwave and Optical Technology Letters,, Vol. 49, No. 1, 103-105, January 2007.
doi:10.1109/TAP.2008.2009654

6. Inclan-Sanchez, , L., et al., "Proximity coupled microstrip patch antenna with reduced harmonic radiation," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 1, 27-32, January 2009.
doi: --- Either ISSN or Journal title must be supplied.

7. Yeo, J., D. Kim, and , "Harmonic suppression characteristic of a CPW-fed circular slot antenna using single slot on a ground conductor," Progress In Electromagnetics Research Letters, , Vol. 11, 11-19, 2009.

8. Shamaileh, , K. A. A., A. M. Qaroot, and N. I. Dib, , "Non-uniform transmission line transformers and their application in the design of compact multi-band Bagley power dividers with harmonics suppression," Progress In Electromagnetics Research,, Vol. 113.

9. Lopetegi, , T., et al., "Design of improved 2-D photonic bandgap microstrip structures," Proc. 23rd Int. Conf. Infrared and Millimeter Waves , 197-198, 1998.
doi:10.1109/22.899965

10. Ahn, , D., J.-S. Park, C.-S. Kim, et al., "A design of the low-pass A design of the low-pass ¯lter using the novel microstrip defected ground structure," IEEE Transactions on Microwave Theory and Techniques,, Vol. 49, No. 1, 86-93, 2001.
doi: --- Either ISSN or Journal title must be supplied.

11. Lim, , J.-S., C.-S. Kim, J.-S. Park, D. Ahn, and S. Nam, "Design of 10 dB 90 branch line coupler using microstrip line with defected ground structure," Electronics Letters, Vol. 36, No. 21, 1784-1785, 2000.
doi:10.1109/TMTT.2005.854212

12. Huang, , S. Y., Y. H. Lee, and , "Tapered dual-plane compact electromagnetic bandgap microstrip lilter structure," IEEE Transactions on Microwave Theory and Techniques,, Vol. 53, No. 9, 2656-2664, Septembe 2005.

14. Woonphil, , K., et al., "Modelling and design of 2D UC-PBG structure using transmission line theory," IEEE Antennas and Propag. Symp., Vol. 3, 780-783, 2002.

15. Baatarkhuu, , D., Y. Choi, S. Yu, T. Tharoeun, H.-W. Liu, and D. Ahn, "Equivalent circuit model for two layer dumbbell type defected ground structures ," PIERS Proceedings,, 1352-1355, Septembe 2011.
doi: --- Either ISSN or Journal title must be supplied.

16. Costa, , F., et al., "Analysis and design of ultra thin electromag-netic absorbers comprising resistively loaded high impedance surfaces," IEEE Transaction on Antennas and Propagation, Vol. 58, No. 5, 1551-1558, 2010.
doi: --- Either ISSN or Journal title must be supplied.