Vol. 23
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-08-12
Accurate Modeling of Microstrip Dumbbell Shaped Slot Resoantor (Dssr) for Miniaturized Tunable Resoantor and Band-Pass Filter
By
Progress In Electromagnetics Research C, Vol. 23, 137-150, 2011
Abstract
In this paper, a novel dumbbell shaped slot resonator (DSSR) is introduced and investigated based on a circuit theory and electromagnetic (EM) simulation. Lumped and distributed equivalent circuit models are then presented for an analysis of the proposed DSSR. The circuit and EM simulated results validate the DSSR's equivalent circuit models and their analysis methodologies. Since the proposed DSSR does not employ ground slots, additional etching process for the ground plane is not necessary. Thus, one can minimize the cost and fabrication errors. For the DSSR's applications, the miniaturized tunable DSSR and band-pass filter (BPF) are designed, simulated, and measured. The tunable DSSR does not require additional lumped DC-block capacitors since DC is isolated due to the coupled gap structures in an input and output. In the BPF design, two DSSRs are simply coupled by input/output ports. Both simulated and measured results of the designed tunable resonator and BPF show good agreement.
Citation
Dong-Jin Jung, and Kai Chang, "Accurate Modeling of Microstrip Dumbbell Shaped Slot Resoantor (Dssr) for Miniaturized Tunable Resoantor and Band-Pass Filter," Progress In Electromagnetics Research C, Vol. 23, 137-150, 2011.
doi:10.2528/PIERC11071705
References

1. Chan, K. T., A. Chin, M.-F. Li, D.-L. Kwong, S. P. McAlister, D. S. Duh, W. J. Lin, and C. Y. Chang, "High-performance microwave coplanar bandpass and bandstop filters on Si substrates ," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 9, 2036-2040, Sep. 2003.
doi:10.1109/TMTT.2003.815890

2. Woo, D. and T. Lee, "Suppression of harmonics in Wilkinson power divider using dual-band rejection by asymmetric DGS," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 6, 2139-2144, Jun. 2005.
doi:10.1109/TMTT.2005.848772

3. Liu, H. W., Z. F. Li, X. W. Sun, and J. F. Mao, "An improved 1D periodic defected ground structure for microstrip line," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 4, 180-182, Apr. 2004.
doi:10.1109/LMWC.2004.827097

4. Ahn, D., J. S. Park, C. S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 1, 86-93, Jan. 2001.
doi:10.1109/22.899965

5. Jung, D.-J. and K. Chang, "Low-pass filter design through the accurate analysis of electromagnetic-bandgap geometry on the ground plane," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 7, 1798-1805, Jul. 2009.
doi:10.1109/TMTT.2009.2022890

6. Balalem, A., A. R. Ali, J. Machac, and A. Omar, "Quasi-elliptic microstrip low-pass filters using an interdigital DGS slot," IEEE Microwave and Wireless Component Lett., Vol. 17, No. 8, 586-588, Aug. 2007.
doi:10.1109/LMWC.2007.901769

7. Ting, S.-W., K.-W. Tam, and R. P. Martins, "Miniaturized microstrip lowpass filter with wide stopband using double equilateral U-shaped defected ground structure," IEEE Microwave and Wireless Component Lett., Vol. 16, No. 5, 240-242, May 2006.
doi:10.1109/LMWC.2006.873592

8. Chen, J., Z.-B.Weng, Y.-C. Jiao, and F.-S. Zhang, "Lowpass filter design of Hilbert curve ring defected ground structure," Progress In Electronmagnetics Research, Vol. 70, 269-280, 2007.
doi:10.2528/PIER07012603

9. Wang, X.-H., B.-Z. Wang, and K. J. Chen, "Compact broadband dual-band bandpass filters using slotted ground structure," Progress In Electronmagnetics Research, Vol. 82, 151-166, 2008.
doi:10.2528/PIER08030101

10. Lim, J.-S., Y.-T. Lee, C.-S. Kim, D. Ahn, and S. Nam, "A vertically periodic defected ground structure and its application in reducing the size of microwave circuits," IEEE Microwave and Wireless Component Lett., Vol. 12, No. 2, 240-242, Dec. 2002.

11. Park, J.-S., J.-S. Yun, and D. Ahn, "A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance," IEEE Trans. Microwave Theory and Tech., Vol. 50, No. 9, 2037-2043, Sep. 2002.
doi:10.1109/TMTT.2002.802313

12. Kim, C.-S., D.-H. Kim, I.-S. Song, K. M. K. H. Leong, T. Itoh, and D. Ahn, "A design of a ring bandpass filters with wide rejection band using DGS and Spur-line coupling structures ," IEEE MTT-S Int. Microwave Symp. Dig., 2183-2186, Jun. 2005.

13. Kwok, S. K., K. F. Tsang, and Y. L. Chow, "A novel capacitance formula of the microstrip line using synthetic asymptote," Microw. Opt. Technol. Lett., Vol. 36, No. 5, 327-330, Mar. 2003.
doi:10.1002/mop.10756

14. Chnag, K., Microwave Solid-state Circuits and Applications, Wiely, 1994.

15. Gopinath, A., "Maximum Q-factor of microstrip resoantors," IEEE Trans. Microw. Theory Tech., Vol. 29, No. 2, 128-131, Sep. 1981.
doi:10.1109/TMTT.1981.1130308