Vol. 23
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-09-01
Variable Coupling Ratio Y-Branch Plastic Optical Fiber (POF) Coupler with Suspended Waveguide Taper
By
Progress In Electromagnetics Research C, Vol. 23, 249-263, 2011
Abstract
A variable coupling ratio Y-Branch plastic optical fiber (POF) coupler based on acrylic has been developed. This device utilized two optical designs: a Y-branch structure with a novel suspended waveguide taper and a simple attenuation technique based on lateral displacement of two fibers for the non-symmetrical coupling ratios. The high index contrast waveguide taper is constructed on the acrylic block itself where the area surrounding the waveguide taper has been designed in such a way that it is surrounded by an open air. A simple attenuation technique based on lateral displacement of two adjoining fibers for each of the two output ports has been proposed and presented for the non-symmetrical coupling ratios. Lateral displacement of the fiber is set from 4.4 mm down to 1.6 mm for output fiber 1 and 0.1 mm to 1.0 mm for output port 2. Numerical analysis has been done on the lateral displacement of the output fibers which shows the device is able to generate non-symmetrical coupling ratios. Device modeling has been performed using non-sequential ray tracing technique on the Y-branch coupler performing as a 3 dB coupler with an excess loss of 1.84 dB and a coupling ratio of 50:50. The designed coupling ratios vary from 1% to 45% for port 1 and 99% down to 55% for port 2 whereas in the simulated device, ratios vary from 7.65% to 39.85% for port 1 and from 92.35% down to 60.15% for port 2. Fabrication of the device is done by producing the device structures on an acrylic block using high speed CNC machining tool. The fabricated device has an excess loss of 5.85 dB while the coupling ratios are 56.86% and 43.14% when operating as a 3 dB coupler. In the variable coupling ratio mode, the coupling ratios are 10.09% to 32.88% for port 1 and 89.91% down to 67.12% for port 2. The excess loss of the fabricated device varies from 5.85 dB to 8.49 dB.
Citation
Abang Annuar Ehsan, Sahbudin Shaari, and Mohd Kamil Abd-Rahman, "Variable Coupling Ratio Y-Branch Plastic Optical Fiber (POF) Coupler with Suspended Waveguide Taper," Progress In Electromagnetics Research C, Vol. 23, 249-263, 2011.
doi:10.2528/PIERC11070301
References

1. Ziemann, O., J. Krauser, P. E. Zamzow, and W. Daum, "POF Handbook: Optical Short Range Transmission System,", 233-293, Springer-Verlag, Berlin, 2008.
doi: --- Either ISSN or Journal title must be supplied.

2. Mizuno, H., O. Sugihara, T. Kaino, N. Okamoto, and M. Ohama, "Compact Y-branch-type polymeric optical waveguide devices with large-core connectable to plastic optical fibers," Jap. J. Appl. Phys., Vol. 44, No. 2, 8504-8506, 2005.

3. Klotzbuecher, T., T. Braune, D. Dadic, M. Sprzagala, and A. Koch, "Fabrication of optical 1 × 2 POF couplers using the laser-LIGA technique ," Proc. SPIE, Vol. 4941, 121-132, Brugge, Belgium, SPIE, 2003.
doi:10.1364/AO.33.002307

4. Takezawa, Y., S. Akasaka, S. Ohara, T. Ishibashi, H. Asano, and N. Taketani, "Low excess losses in a Y-branching plastic optical waveguide formed through injection molding," Appl. Opt., Vol. 33, No. 12, 2307-2312, 1994.
doi:10.2528/PIER09012903

5. Ehsan, A. A., S. Shaari, and M. K. Abd-Rahman, "1 × 2 Y branch plastic optical fiber waveguide coupler for optical access-card system," Progress In Electromagnetics Research, Vol. 91, 85-100, 2009.
doi:10.1049/el:19960503

6. Suzuki, S., T. Kitoh, Y. Inoue, Y. Yamada, Y. Hibino, K. Moriwaki, and M. Yanagisawa, "Integrated optic Y-branching waveguides with an asymmetric branching ratio," Electron. Lett., Vol. 32, No. 8, 735-736, 1996.

7. Kurokawa, H., H. Kawashima, H. Kasai, M. Kuroda, T. Yoshimura, and K. Asam, "An asymmetric optical splitter and its application to optical monitoring devices," LEOS 14th Ann. Meet., Vol. 1, 232-233, San Diego, USA, 2001.
doi:10.1109/3.772181

8. Lin, H. B., J. Y. Su, R. S. Cheng, and W. S. Wang, "Novel optical single-mode asymmetric-branches for variable power splitting," IEEE J. Quant. Electron., Vol. 35, No. 7, 1092-1096, 1999.

9. Love, J. D. and W. M. Henry, "Asymmetric multimode Y-Junction splitters," J. Opt. Quant. Electron., Vol. 29, 379-392, 1997.
doi:10.2528/PIER09112206

10. Ehsan, A. A., S. Shaari, and M. K. Abd-Rahman, "Metal-based 1×2 and 1×4 asymmetric plastic optical fiber couplers for optical code generating devices," Progress In Electromagnetics Research, Vol. 101, 1-16, 2010.

11. Ehsan, A. A., Plastic optical fiber couplers for portable optical access card system, Ph.D. Thesis, Universiti Teknologi MARA, 2010.
doi:10.1364/AO.30.000645

12. Kagami, M., Y. Sakai, and H. Okada, "Variable-ratio tap for plastic optical fiber," Appl. Opt., Vol. 30, No. 6, 645-649, 1991.

13. Weinert, A., Plastic Optical Fibers: Principles, Components and Installation , 104, MCD Verlag, Munich, 1999.

14. Ehsan, A. A., S. Shaari, and M. K. Abd-Rahman, "Plastic optical fiber coupler with high index contrast waveguide taper," Progress In Electromagnetics Research C, Vol. 20, 125-138, 2011.