Vol. 23
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-08-16
A Novel Ka-Band Solid-State Power Combining Amplifier
By
Progress In Electromagnetics Research C, Vol. 23, 161-173, 2011
Abstract
This paper presents a high-efficiency Ka-band solid-state power combining amplifier on the basis of a novel waveguide magic tee. By employing 16 low-power amplifier modules and compact waveguide power combining network with a low loss microstrip-to-waveguide transition, the output loss of the combining circuit is minimized, so a high combining efficiency larger than 85% from 34 to 36 GHz is obtained. Modular architecture is adopted in the combiner design. The single amplifier, bias circuit and heat sink are all fabricated separately, which add great flexibility to the system. Modular amplifiers can be premade and reserved in case any malfunctioning amplifier needs to be replaced. In addition, the improved power combining amplifier has the advantages of low loss, high isolation, compact structure, excellent heat-sink, etc.
Citation
Li Zhao, Jun Xu, Lei Wang, and Mao-Yan Wang, "A Novel Ka-Band Solid-State Power Combining Amplifier," Progress In Electromagnetics Research C, Vol. 23, 161-173, 2011.
doi:10.2528/PIERC11061408
References

1. Epp, L. W., D. J. Hoppe, A. R. Khan, and S. L. Stride, "A high-power Ka-band (31-36 GHz) solid-state amplifier based on low-loss corporate waveguide combining," IEEE Trans. Microwave Theory Tech., Vol. 56, 1899-1908, 2008.
doi:10.1109/TMTT.2008.927299

2. Simons, R. N., E. G. Wintucky, J. D. Wilson, and D. A. Force, "Ultra-high power and e±ciency space traveling-wave tube ampli¯er power combiner with reduced size and mass for NASA missions," IEEE Trans. Microwave Theory Tech., Vol. 57, 582-588, 2009.
doi:10.1109/TMTT.2008.2012298

3. Delisio, M. P. and R. A. York, "Quasi-optical and spatial power combining," IEEE Trans. Microwave Theory Tech., Vol. 50, 929-936, 2002.
doi:10.1109/22.989975

4. Chang, K. and C. Sun, "Millimeter-wave power-combining techniques," IEEE Trans. Microwave Theory Tech., Vol. 83, 91-107, 1983.
doi:10.1109/TMTT.1983.1131443

5. Zhang, B., Y.-Z. Xiong, L. Wang, S. Hu, T.-G. Lim, Y.-Q. Zhuang, and L.-W. Li, "A D-band power amplifier with 30-GHz bandwidth and 4.5-dBm Psat for high-speed communication system," Progress In Electromagnetics Research, Vol. 107, 161-178, 2010.
doi:10.2528/PIER10060806

6. Wong, S.-K., F. Kung, W. Lee, S. Maisurah, and M. N. B. Osman, "A wimedia compliant CMOS RF power amplifier for Ultra-wideband (UWB) transmitter," Progress In Electromagnetics Research, Vol. 112, 329-347, 2011.

7. Khan, P., L. Epp, and A. Silva, "A Ka-band wideband-gap solid-state power amplifier: Architecture identification," JPL, Pasadena, CA, Interplanetary Network Progress Rep., Vol. 42-162, 1-16, 2005.

8. Buoli, C., S. Fusaroli, V. M. Gadaleta, F. Morgia, and T. Turillo, "Microstrip to waveguide 3 dB power splitter/combiner on FR4 PCB up to 50 GHz," 2005 European Microwave Conference, 4-6, 2005.

9. Wang, L., J. Xu, L. Zhao, D. Ran, and M. Y.Wang, "A millimeter-wave solid-state power combining circuit based on branch-waveguide directional coupler," Proceedings 2010 International Symposium on Signals, Systems and Electronics, Vol. 1, 265-267, 2010.

10. Russell, K. J., "Microwave power combining techniques," IEEE Trans. Microwave Theory Tech., Vol. 27, 472-478, 1979.
doi:10.1109/TMTT.1979.1129651

11. Wu, H. and W.-B. Dou, "A rigorous analysis and experimental researches of waveguide magic tee at W band," Progress In Electromagnetics Research, Vol. 60, 131-142, 2006.
doi:10.2528/PIER05112904

12. Xie, X. Q., C. X. Zhao, and R. Diao, "A millimeter-wave power combining amplifier based on a waveguide-microstrip E-plane dual-probe four-way power combining network," Int. J. Infrared Milli. Waves, Vol. 29, 862-870, 2008.
doi:10.1007/s10762-008-9380-7

13. Aliakbarian, H., A. Enayati, G. A. E. Vandenbosch, and W. de Raedt, "Novel low-lost end-wall microstrip-to-waveguide splitter transition," Progress In Electromagnetics Research, Vol. 101, 75-96, 2010.
doi:10.2528/PIER09081805

14. Costanzo, S., "Synthesis of multi-step coplanar waveguide-to-microstrip transition," Progress In Electromagnetics Research, Vol. 113, 111-126, 2011.