Vol. 23
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-08-16
Fractal-Shaped Complementary Electric-LC Resonator for Bandstop Filter
By
Progress In Electromagnetics Research C, Vol. 23, 205-217, 2011
Abstract
An equivalent circuit model for single negative metamaterial (MTM) transmission line based on microstrip complementary electric inductive-capacitive resonator (CELC) is proposed for the first time. The verified circuit model gives strong support to the interpretation of all exhibited electromagnetic (EM) phenomena. The nonpure magnetic and electric resonances have been demonstrated by constitutive EM parameters. Based on the conclusions that have drawn, a more compact sub-wavelength particle based on Hilbert-shaped CELC (H-CELC) is proposed. The design procedures of the H-CELC-loaded MTM cell are derived based on the circuit model. For application, a bandstop filter covering one of the ISM bands 5.2 GHz by cascading two H-CELC cells is designed, fabricated and measured. Consistent results between simulation and measurement have confirmed the design. The established theory based on the proposed circuit model is of reference value for the design of novel bandstop devices.
Citation
He-Xiu Xu, Guang-Ming Wang, and Qing Peng, "Fractal-Shaped Complementary Electric-LC Resonator for Bandstop Filter," Progress In Electromagnetics Research C, Vol. 23, 205-217, 2011.
doi:10.2528/PIERC11052006
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

3. Caloz, C. and T. Itoh, "Application of the transmission line theory of left-handed materials to the realization of a microstrip `LH line' ," IEEE AP-S Int. Symp. Dig., 412-415, 2002.

4. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marque's, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett., Vol. 93, 197401, 2004.
doi:10.1103/PhysRevLett.93.197401

5. Messiha, N. T., A. M. Ghuniem, and H. M. El-Hennawy, "Planar transmission line medium with negative refractive index based on complementary omega-like structure," IEEE Microw. Wirel. Compon. Lett., Vol. 18, 575-577, 2008.
doi:10.1109/LMWC.2008.2002446

6. Schurig, D., J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett., Vol. 88, 041109, 2006.
doi:10.1063/1.2166681

7. Hand, T. H., J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, "Characterization of complementary electric field coupled resonate surface ," Appl. Phys. Lett., Vol. 93, 212504, 2008.
doi:10.1063/1.3037215

8. Chen, H.-T., J. F. O'Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, "Complementary planar terahertz metamaterials," Optics Express, Vol. 15, 1084-1095, 2007.
doi:10.1364/OE.15.001084

9. Lu, M., J. Y. Chin, R. Liu, and T. J. Cui, "A microstrip phase shifter using complementary metamaterials," Proceedings of International Conference on Microwave and Millimeter Wave, 1569-1571, Nanjing, China, April 21{24, 2008.

10. An, J., G.-M. Wang, W.-D. Zeng, and L.-X. Ma, "UWB filter using defected ground structure of Von Koch fractal shaped slot," Progress In Electromagnetics Research Letters, Vol. 61, 61-66, 2009.
doi:10.2528/PIERL08121309

11. Jahanbakht, M. and M. N. Moghaddasi, "Fractal beam KU-band MEMS phase shifter," Progress In Electromagnetics Research Letters, Vol. 5, 73-85, 2008.
doi:10.2528/PIERL08101703

12. Chen, W.-L., G.-M. Wang, and C.-X. Zhang, "Bandwidth enhancement of a microstrip-line-fed printed wide-slot antenna with a fractal-shaped slot," IEEE Trans. Antennas Propag., Vol. 57, No. 7, 2176-2179, Jul. 2009.
doi:10.1109/TAP.2009.2021974

13. Kordzadeh, A. and F. Hojat Kashani, "A new reduced size microstrip patch antenna with fractal shaped defects," Progress In Electromagnetics Research B, Vol. 11, 29-37, 2009.
doi:10.2528/PIERB08100501

14. Xu, H.-X., G.-M. Wang, and K. Lu, "Tunable low-pass filter using fractal shaped complementary split ring resonator with ultra-wide stop-band and excellent selectivity," International Conference on Ultra-wide Band Technology, Vol. 2, 694-696, Sep. 2010.

15. Xu, H.-X., G.-M. Wang, C.-X. Zhang, and J.-G. Liang, "Hilbert-shaped complementary ring resonator and application to enhanced-performance low pass filter with high selectivity," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 7, No. 6, 399-406, 2011.
doi:10.1002/mmce.20529

16. Xu, H.-X., G.-M. Wang, and J.-G. Liang, "Novel CRLH TL metamaterial and compact microstrip branch-line coupler application," Progress In Electromagnetics Research C, Vol. 20, 173-186, 2011.

17. Chen, X. D., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials ," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

18. Woo, D.-J., T.-K. Lee, J.-W. Lee, C.-S. Pyo, and W.-K. Choi, "Novel u-slot and v-slot DGSs for bandstop filter with improved Q factor," IEEE Trans. Microwave Theory Tech., Vol. 54, 2840-2847, 2006.
doi:10.1109/TMTT.2006.875450

19. Karmakar, N. C., "Theoretical investigations into binomial distributions of photonic bandgaps in microstrip line structures," Microw. Opt. Technol. Lett., Vol. 33, 191-196, 2002.
doi:10.1002/mop.10273