Vol. 20
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-03-16
Investigation on the Microwave Pulse Signal Compression with NGD Circuit
By
Progress In Electromagnetics Research C, Vol. 20, 155-171, 2011
Abstract
This paper demonstrates the exhibition of pulse compression from an electronic circuit with negative group delay (NGD). This circuit consists of a field effect transistor (FET) cascaded with shunt RLC network. Theoretic and experimental investigations have proved that, at its resonance frequency, the group delay of this circuit is always negative. The present study shows that around this resonance, it presents a gain form enabling to generate pulse compression. To validate this concept, as proof-of-principle, devices with one- and two-stages FET were implemented and tested. Measurements of the one-stage test device evidenced an NGD of about -2.5 ns and simultaneously with 2 dB amplification operating at 622 MHz resonance frequency. In the frequency domain, in the case of a Gaussian input pulse with 40\,MHz frequency standard deviation, this resulted in 125% expansion of pulse width compared to the input one. In time domain, simulations showed that the compression was about 80% in the case of an input Gaussian pulse with 4 ns standard deviation. With the other prototype comprised of two-stage NGD cell, the use of a sine carrier of about 1.03 GHz allowed to achieve 87% pulse width compression.
Citation
Blaise Ravelo, "Investigation on the Microwave Pulse Signal Compression with NGD Circuit," Progress In Electromagnetics Research C, Vol. 20, 155-171, 2011.
doi:10.2528/PIERC10122305
References

1. Gaponov-Grekhov, A. V. and V. L. Granatstein, Applications of High-power Microwaves, Artech House, Boston, MA, 1994.

2. Thumm, M. K. and W. Kasparek, "Passive high-power microwave components," IEEE Trans. Plasma Sci., Vol. 30, No. 3, 755-786, 2002.
doi:10.1109/TPS.2002.801653

3. Bromley, R. A. and B. E. Callan, "Use of a waveguide dispersive line in an f.m. pulse-compression system," Proc. of IEE, Vol. 114, 1213-1218, 1967.

4. Giordmaine, J. A., M. A. Duguay, and J. W. Hansen, "Compression of optical pulses (Mode locked HeNe laser generated light pulse compression in time without energy loss, using method similar to chirp radar method)," IEEE J. Quantum Electron., Vol. 4, No. 252, 1968.

5. Strickland, D. and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun., Vol. 55, 447-449, 1985.
doi:10.1016/0030-4018(85)90151-8

6. Li, P., X. Chen, Y. Chen, and Y. Xia, "Pulse compression during second-harmonic generation in engineered aperiodic quasi-phase-matching gratings," Optics Express, Vol. 13, No. 18, 6807-6814, 2005.
doi:10.1364/OPEX.13.006807

7. Arbore, M. A., O. Marco, and M. M. Fejer, "Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings," Opt. Lett., Vol. 22, No. 12, 865-867, 1997.
doi:10.1364/OL.22.000865

8. Arbore, M. A., "Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate," Opt. Lett., Vol. 22, No. 17, 1341-1343, 1997.
doi:10.1364/OL.22.001341

9. Imeshev, G., "Engineerable femtosecond pulse shaping by second-harmonic generation with Fourier synthetic quasi-phase-matching gratings," Opt. Lett., Vol. 23, No. 11, 864-866, 1998.
doi:10.1364/OL.23.000864

10. Wang, C. and J. Yao, "Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating," IEEE Tran. MTT, Vol. 56, No. 2, 542-553, 2008.
doi:10.1109/TMTT.2007.914639

11. Wang, C. and J. Yao, "Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings," IEEE Photon. Technol. Lett., Vol. 20, No. 11, 882-884, 2008.
doi:10.1109/LPT.2008.922333

12. Zeitouny, A., S. Stepanov, O. Levinson, and M. Horowitz, "Optical generation of linearly chirped microwave pulses using fiber Bragg gratings," IEEE Photon. Technol. Lett., Vol. 17, No. 3, 660-662, 2005.
doi:10.1109/LPT.2004.842349

13. Baum, C. E., "Coupling ports in waveguide cavities for multiplying fields in pulse-compression schemes," Circuit and Electromagnetic System Design Note, 52, 2006.

14. Augustinovitch, V. A., S. N. Artemenko, P. Y. Chumerin, V. L. Kaminsky, V. L. Novikov, Y. G. Yushkov, and D. V. Zelentsov, "Circuit designs in microwave pulse compression," Proc. of International Vacuum Electronics Conference Abstracts, 2, 2000.
doi:10.1109/OVE:EC.2000.847453

15. Burt, G., S. V. Samsonov, A. D. R. Phelps, V. L. Bratman, K. Ronald, G. G. Denisov, W. He, A. R. Young, A. W. Cross, and I. V. Konoplev, "Microwave pulse compression using a helically corrugated waveguide," IEEE Trans. on Plasma Science, Vol. 33, No. 2, 661-667, 2005.
doi:10.1109/TPS.2005.844522

16. Danilov, Y. Y., S. V. Kuzikov, V. G. Pavel'ev, Y. I. Koshurinov, and D. Y. Shchegol'kov, "Linear frequency-modulated pulse compressor based on a three-mirror ring cavity," Tech. Phys. Lett., Vol. 50, No. 4, 523-525, 2005.

17. Petelin, M., J. Hirsh¯eld, Y. Y. Danilov, S. Kuzikov, V. Pavelyev, D. Schegolkov, and A. Yunakovsky, "Components for quasi-optically-fed linear accelerators," Proc. of AIP Conf., Vol. 807, 408-415, 2006.

18. Kuzikov, S. V., Y. Y. Danilov, G. G. Denisov, D. Y. Shegokov, and A. A. Vikharev, "Multi-mode sled-II pulse compressors," Proc. of LINAC2004, THP28, 660-662, Lübek Germany, 2004.

19. Cao, H., A. Dogariu, and L. J. Wang, "Negative group delay and pulse compression in superluminal pulse propagation," IEEE J. Sel. Top. Quantum Electron., Vol. 9, No. 1, 52-58, 2003.
doi:10.1109/JSTQE.2002.807974

20. Lucyszyn, S., I. D. Robertson, and A. H. Aghvami, "Negative group delay synthesiser," Electronic Lett., Vol. 29, 798-800, 1993.
doi:10.1049/el:19930533

21. Broomfield, C. D. and J. K. A. Everard, "Broadband negative group delay networks for compensation of oscillators, filters and communication systems ," Electronics Lett., Vol. 23, 1931-1933, 2000.
doi:10.1049/el:20001377

22. Eleftheriades, G. V., O. Siddiqui, and A. K. Iyer, "Transmission line for negative refractive index media and associated implementations without excess resonators," IEEE MWC Lett., Vol. 13, No. 2, 51-53, 2003.

23. Siddiqui, O. F., M. Mojahedi, and G. V. Eleftheriades, "Periodically loaded transmission line with effective negative refractive index and negative group velocity," IEEE Trans. Ant. Prop., Vol. 51, No. 10, 2619-2625, 2003.
doi:10.1109/TAP.2003.817556

24. Siddiqui, O. F., S. J. Erickson, G. V. Eleftheriades, and M. Mojahedi, "Time-domain measurement of negative group delay in negative-refractive-index transmission-line metamaterials," IEEE Trans. MTT, Vol. 52, 1449-1454, 2004.
doi:10.1109/TMTT.2004.827018

25. Chiao, R. Y., E. L. Bolda, J. Bowie, J. Boyce, and M. W. Mitchell, "Superluminality and amplifiers," Prog. Crystal Growth Charact. Mat., Vol. 33, 319-325, 1996.
doi:10.1016/0960-8974(96)83663-1

26. Mitchell, M. W. and R. Y. Chiao, "Causality and negative group delays in a simple bandpass amplifier," Am. J. Phys., Vol. 66, 14-19, 1998.
doi:10.1119/1.18813

27. Mitchell, M. W. and R. Y. Chiao, "Negative group delay and `fronts' in a causal systems: An experiment with very low frequency bandpass amplifiers ," Phys. Lett. A, Vol. 230, 133-138, 1997.
doi:10.1016/S0375-9601(97)00244-2

28. Kitano, M., T. Nakanishi, and K. Sugiyama, "Negative group delay and superluminal propagation: An electronic circuit approach ," IEEE J. Sel. Top. Quantum Electron., Vol. 9, No. 1, 43-51, 2003.
doi:10.1109/JSTQE.2002.807979

29. Nakanishi, T., K. Sugiyama, and M. Kitano, "Demonstration of negative group delays in a simple electronic circuit," Am. J. Phys., Vol. 70, No. 11, 1117-1121, 2002.
doi:10.1119/1.1503378

30. Solli, D., R. Y. Chiao, and J. M. Hickmannn, "Superluminal effects and negative group delays in electronics, and their applications ," Phys. Rev. E, Vol. 66, 056601.1-056601.4, 2002.

31. Munday, J. N. and R. H. Henderson, "Superluminal time advance of a complex audio signal," Appl. Phys. Lett., Vol. 85, 503-504, 2004.
doi:10.1063/1.1773926

32. Woodley, J. F. and M. Mojahedi, "Negative group velocity and group delay in left-handed media," Phys. Rev. E, Vol. 70, 046603.1-046603.6, 2004.

33. Pendry, J. B., "Negative refraction make a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969 , 2000.
doi:10.1103/PhysRevLett.85.3966

34. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

35. Pendry, J. B., "Negative refraction," Contemporary Physics, Vol. 45, 191-202, 2004.
doi:10.1080/00107510410001667434

36. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, 788-792, 2004.
doi:10.1126/science.1096796

37. Ravelo, B., A. Perennec, M. Le Roy, and Y. Boucher, "Active microwave circuit with negative group delay," IEEE MWC Lett., Vol. 17, No. 12, 861-863, Dec. 2007.

38. Ravelo, B., A. Perennec, and M. Le Roy, "Synthesis of broadband negative group delay active circuits," IEEE MTT-S Int. Symp. Digest, 2177-2180, Jun. 2007.

39. Ravelo, B., A. Perennec, and M. Le Roy, "Negative group delay active topologies respectively dedicated to microwave frequencies and baseband signals," J. EuMA, Vol. 4, 124-130, Jun. 2008.

40. Ravelo, B., A. Perennec, and M. Le Roy, "Study and application of microwave active circuits with negative group delay," Microwave and Millimeter Wave Technologies Modern UWB Antennas and Equipment, Chapter 21, Intech Book ed. by Prof Igor Minin, 415-439, Mar. 2010.