Vol. 18
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-11-10
Optimal Design of Dipole Antennas Backed by a Finite High-Impedance Screen
By
Progress In Electromagnetics Research C, Vol. 18, 137-151, 2011
Abstract
The performance of a short dipole antenna closely located above a finite High-Impedance Surface (HIS) is addressed. The antenna behavior is thoroughly analyzed in the frequency range up to the HIS resonance within the region where the propagation of the TE surface waves is not allowed. In the first part of the paper the analysis of a dipole antenna above a grounded dielectric slab is considered, and then it is extended to the case of a substrate with a frequency selective surface printed on it. For all configurations, the radiation pattern of the structure and Front-to-Back Ratio (FBR) are reported and compared. It is shown that the presence of a suitable frequency selective surface, regardless of the shape of the periodic elements, guarantees the antenna matching but does not influence the behavior of the radiation patterns and the front-to-back ratio in the frequency range where only TM modes are allowed to propagate. The front-to-back ratio has been found to be maximum when the size of the generic HIS is around 0.8λg (with λg the TM guided surface wave wavelength). All the speculations are supported by simulated and measured results.
Citation
Giacomo Bianconi, Filippo Costa, Simone Genovesi, and Agostino Monorchio, "Optimal Design of Dipole Antennas Backed by a Finite High-Impedance Screen," Progress In Electromagnetics Research C, Vol. 18, 137-151, 2011.
doi:10.2528/PIERC10111204
References

1. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with forbidden frequency band," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001

2. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2691-2703, October 2003.
doi:10.1109/TAP.2003.817559

3. Baracco, J.-M., L. Salghetti-Drioli, and P. de Maagt, "AMC low profile wideband reference antenna for GPS and GALILEO systems," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2540-2547, 2008.
doi:10.1109/TAP.2008.927547

4. Akhoondzadeh-Asl, L., D. J. Kern, P. S. Hall, and D. H. Werner, "Wideband dipoles on electromagnetic bandgap ground planes," IEEE Trans. Antennas Propag., Vol. 55, No. 9, 2426-2434, 2007.
doi:10.1109/TAP.2007.904071

5. Elek, F., R. Abhari, and G. V. Eleftheriades, "A uni-directional ring-slot antenna achieved by using an electromagnetic band-gap surface," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 181-190, 2005.
doi:10.1109/TAP.2004.840533

6. Costa, F., A. Monorchio, S. Talarico, and F. M. Valeri, "An active high impedance surface for low profile tunable and steerable antennas," IEEE Antennas Wireless Propag. Lett., Vol. 7, 676-680, 2008.
doi:10.1109/LAWP.2008.2006070

7. Best, S. and D. Hanna, "Design of a broadband dipole in close proximity to an EBG ground plane," IEEE Antennas and Propagation Magazine, Vol. 50, No. 6, 52-64, 2008.
doi:10.1109/MAP.2008.4768923

8. Tran, C.-M., H. Hafdallah-Ouslimani, L. Zhou, A. C. Priou, H. Teillet, J.-Y. Daden, and A. Ourir, "High impedance surfaces based antennas for high data rate communications at 40 GHz," Progress In Electromagnetics Research C, Vol. 13, 217-229, 2010.
doi:10.2528/PIERC10040404

9. Bao, X. L., G. Ruvio, and M. J. Amman, "Directional dual-band slot antenna with dual-bandgap high-impedance-surface reflector," Progress In Electromagnetics Research C, Vol. 9, 1-11, 2009.
doi:10.2528/PIERC09051505

10. Rajo-Iglesias, E., L. Inclan-Sanchez, and O. Quevedo-Teruel, "Back radiation reduction in patch antennas using planar soft surfaces," Progress In Electromagnetics Research Letters, Vol. 6, 123-130, 2009.
doi:10.2528/PIERL08111202

11. Tretyakov, S., Analytical Modelling in Applied Electromagnetics, Artech House, Boston, 2003.

12. Clavijo, S., R. E. Dıaz, and W. E. McKinzie, III, , "Desing methodology for Sievenpiper high-impedance surfaces: An artificial magnetic conductor for positive gain electrically small antennas," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2678-2690, October 2003.
doi:10.1109/TAP.2003.817575

13. Luukkonen, O., C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Räisänen, and S. A. Tretyakov, "Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1624-1632, 2008.
doi:10.1109/TAP.2008.923327

14. Kern, D. J., D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, "The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces," IEEE Trans. Antennas Propag., Vol. 53, No. 1, Part 1, 8-17, January 2005.

15. Maci, S. and A. Cucini, "FSS-based EBG surfaces," Electromag netic Metamaterials: Physics and Engineering Aspects, N. Engheta and R. W. Ziolkowski (eds.), Wiley-Interscience, New York, 2006.

16. Yakovlev, A. B., O. Luukkonen, C. R. Simovski, S. A. Tretyakov, S. Paulotto, P. Baccarelli, and G. W. Hanson, "Analytical modeling of surface waves on high impedance surfaces," Metamaterials and Plasmonics: Fundamentals, Modelling, Applications, S. Zouhdi, A. Sihvola, and A. P. Vinogradov (eds.), 239-254, NATO Science for Peace and Security Series B, 2009.

17. Luukkonen, O., C. R. Simovski, and S. A. Tretyakov, "Grounded uniaxial material slabs as magnetic conductors," Progress In Electromagnetics Research B, Vol. 15, 267-283, 2009.
doi:10.2528/PIERB09050702

18. Hansen, R. C., "Effects of a high-impedance screen on a dipole antenna," IEEE Antennas Wireless Propag. Lett., Vol. 1, 46-49, 2002.
doi:10.1109/LAWP.2002.805121

19. Abedin, M. F. and M. Ali, "Effects of EBG reflection phase profiles on the input impedance and bandwidth of ultra-thin directional dipoles," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3664-3672, 2005.
doi:10.1109/TAP.2005.858584

20. Tretyakov, S. A. and C. R. Simovski, "Wire antennas near artificial impedance surfaces," Microwave and Optical Technology Letters, Vol. 27, No. 1, 46-50, 2000.
doi:10.1002/1098-2760(20001005)27:1<46::AID-MOP13>3.0.CO;2-9

21. Paulotto, S., P. Baccarelli, P. Burghignoli, G. Lovat, G. Hanson, and A. B. Yakovlev, "Homogenized Green's functions for an aperiodic line source over planar densely periodic artificial impedance surfaces," IEEE Trans. on Microwave Theory and Techniques, Vol. 58, No. 7, 1807-1817, July 2010.
doi:10.1109/TMTT.2010.2049917

22. Moosavi, P. and L. Shafai, "Directivity of microstrip ring antennas and effects of finite ground plane on the radiation parameters," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 672-675, June 1998.

23. Marg, R., I. Schon, and A. F. Jacob, "Finite ground plane effects on the radiation pattern of small microstrip arras," IEE Proc. Microw. Antennas Propag., Vol. 147, No. 2, 139-143, April 2000.
doi:10.1049/ip-map:20000095

24. Namiki, T., Y. Murayama, and K. Ito, "Improving radiation-pattern distorsion of a patch antenna having a finite ground plane," IEEE Trans. Antennas Propag., Vol. 51, No. 3, March 2003.
doi:10.1109/TAP.2003.809838

25. Huynh, M.-C. and W. Stutzman, "Ground plane effects on planar inverted-F antenna (PIFA) performance," IEE Proc. Microw. Antennas Propag., Vol. 150, No. 4, 209-213, August 2003.
doi:10.1049/ip-map:20030551

26. Kim, T.-Y., J.-W. Park, and B.-G. Kim, "Impact of a square grounded dielectric substrate on the radiation characteristics of a rectangular microstrip patch antenna," IEEE Antennas and Propagation Society International Symposium, 2009. APSURSI'09, 1-4, June 1-5, 2009.

27. Munk, B. A., Frequency Selective Surfaces --- Theory and Design, John Wiley & Sons, New York, 2000.
doi:10.1002/0471723770

28. Munk, B. A., D. S. Janning, J. B. Pryor, and R. J. Marhefka, "Scattering from surface waves on finite FSS," IEEE Trans. Antennas Propag., Vol. 49, 1782-1793, December 2001.
doi:10.1109/8.982461

29. Janning, D. S. and B. A. Munk, "Effects of surface waves on the currents of truncated periodic arrays," IEEE Trans. on Antennas and Propagation, Vol. 50, No. 9, 1254-1265, 2002.
doi:10.1109/TAP.2002.801378

30. Çivi, Ö. A. and P. H. Pathak, "Array guided surface waves on a finite planar array of dipoles with or without a grounded substrate," IEEE Trans. Antennas Propag., Vol. 54, No. 8, 2244-2252, August 2006.
doi:10.1109/TAP.2006.879185

31. Azad, M. Z. and M. Ali, "Novel wideband directional dipole antenna on a mushroom like EBG structure," IEEE Trans. Antennas Propag., Vol. 56, No. 5, 1242-1250, 2008.
doi:10.1109/TAP.2008.922673