Vol. 19
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-02-03
External and Internal Electromagnetic Exposures of Workers Near High Voltage Power Lines
By
Progress In Electromagnetics Research C, Vol. 19, 191-205, 2011
Abstract
The major objective of the study was to assess the safety of electric line workers exposed to of a double circuit 132 kV transmission line for different scenarios. The double circuit 132-kV, 60 Hz transmission line has a power rating of 293 MVA and a maximum recorded peak load current of 603 A. The charge simulation and the Biot Savart methods were used by EPRI workstation software to compute the external electric and magnetic fields around a 132 KV transmission line. We used the calculated external electric and magnetic field exposures to determine the induced electric field and induced current densities inside the human body. This was performed using the Finite Difference Time Difference computational algorithm in EMPIRE commercial software, with a 6 mm voxel resolution. We used the Visible Human (VH) to investigate the internal induced electric field and circulating current densities in more than 40 different tissues and organs of the VH. We found that the worker exposure levels to extremely low frequency electromagnetic fields are below the recommended IEEE international standards limits for the studied scenarios. In all scenarios the maximum induced current densities and electric fields were in the bone marrow of the feet.
Citation
Nabil M. Maalej, and C. Belhadj, "External and Internal Electromagnetic Exposures of Workers Near High Voltage Power Lines," Progress In Electromagnetics Research C, Vol. 19, 191-205, 2011.
doi:10.2528/PIERC10110601
References

1. IEEE Standard for Safety Levels with Respect to Human Exposure to Electromagnetic Fields, 0-3 kHz, IEEE Std C95.6, 2002.

2. ICNIRP, , Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz), Vol. 99, No. 6, 818-836 Health Physics, 2010.

3. National Radiological Protection Board (NRPB), , Advice on limiting exposure to electromagnetic fields (0-300 GHz), Vol. 15, No. 2 2004, http://www.hpa.org.uk/Publications/Radiation/NPRBArchive/DocumentsOfTheNRPB/Absd1502/.
doi:10.1002/bem.2250130706

4. Gandhi, O. P. and J. Y. Chen, "Numerical dosimetry at power line frequencies using anatomically based models," Bioelectromagn. J. Supp., Vol. 1, 43-60, 1992.

5. Dawson, T. W., J. DeMoerloose, and M. A. Stuchly, "Comparison of magnetically induced ELF fields in humans computed by FDTD and scalar potential FD codes," Appl. Comput. Electromag. Soc. (ACES), Vol. 11, 63-71, 1996.

6. Zubal, I. G., C. R. Harrell, E. O. Smith, Z. Rattner, G. R. Gindi, and P. H. Hoffer, "Computerized three-dimensional segmented human anatomy," Med. Phys. Biol., Vol. 21, 299-302, 1994.
doi:10.1088/0031-9155/42/3/003

7. Dimbylow, P. J., "FDTD calculations of the whole-body averaged SAR in an anatomically realistic voxel model of the human body from 1MHz to 1 GHz ," Phys. Med. Biol., Vol. 42, 479-490, 1997.
doi:10.1088/0031-9155/47/16/301

8. Dimbylow, P. J., "Fine resolution calculations of SAR in the human body for frequencies up to 3 GHz," Phys. Med. Biol., Vol. 47, 2835-46, 2002.
doi:10.1097/00004032-199209000-00003

9. Gandhi, O. P., Y. G. Gu, J. Y. Chen, and H. I. Bassen, "Specific absorption rates and induced current distributions in an anatomically based human model for plane-wave exposures," Health Phys., Vol. 63, 281-290, 1992.
doi:10.1088/0031-9155/54/4/004

10. Kuhn, S., W. Jennings, A. Christ, and N. Kuster, "Assessment of induced radio-frequency electromagnetic fields in various anatomical human body models," Phys. Med. Biol., Vol. 54, 875-89, 2009.
doi:10.1088/0031-9155/53/16/R01

11. Hand, J. W., "Modeling the interaction of electromagnetic fields (10 MHz{10 GHz) with the human body: Methods and applications ," Phys. Med. Biol., Vol. 53, R243-R286, 2008.
doi:10.1109/20.668071

12. Dawson, T. W. and M. A. Stuchly, "High-resolution organ dosimetry for human exposure to low-frequency magnetic fields," IEEE Trans. Mag., Vol. 34, No. 3, 708-718, 1998.
doi:10.1002/(SICI)1521-186X(1998)19:5<293::AID-BEM3>3.0.CO;2-X

13. Furse, C. M. and O. P. Gandhi, "Calculation of electric fields and currents induced in a millimeter resolution human model at 60 Hz using the FDTD method," Bioelectromagnetics, Vol. 19, 293-299, 1998.
doi:10.1029/94RS01158

14. Gandhi, O. P., "Some numerical methods for dosimetry: Extremely low frequencies to microwave frequencies," Radio Science, Vol. 30, 161-177, 1995.
doi:10.1002/1521-186X(200102)22:2<112::AID-BEM1014>3.0.CO;2-0

15. Gandhi, O. P., G. Kang, D. Wu, and G. Lazzi, "Currents induced in anatomic models of the human for uniform and nonuniform power frequency magnetic fields," Bioelectromagnetics, Vol. 22, 112-121, 2001.
doi:10.1088/0031-9155/43/2/001

16. Dimblylow, P. J., "Induced current densities from low-frequency magnetic fields in a 2mm resolution, anatomically realistic model of the body ," Phys. Med. Biol., Vol. 43, 221-230, 1998.

17. Shen, L. and J. Kong, Applied Electromagnetics, Brooks/Cole Engineering Division, 1983.

18. Zahn, M., Electromagnetic Field Theory: A Problem Solving Approach, J. Wiley, 1979.

19. Rims, K. J. and P. L. Lawrenson, Analysis and Computation of Electric and Magnetic Field Problems, Pergamon Press, 1973.

20. Silvaster, P. and P. Ferrari, Finite Element for Electrical Engineers, Cambridge University Press, 1983.

21. Foe, P. Y. and S. Y. King, Proc. IEE Bundle Conductors Electric Field by Integral Equations Method, Vol. 123, No. 7, 702-706, 1976.

22. Maruvade, P. S. and W. Janischweskyj, "IEEE Trans. PAS Electrostatic Field of System of Parallel Cylindrical Conductors,", Vol. 88, No. 7, 1069-1078, 1969.

23. Singer, H., H. Steinbigler, and P. Weiss, "A charge simulation method for the calculation of high voltage fields," EEE Trans. PAS, Vol. 93, 1660-1668, 1974.

24. El-Arabaty, A., M. Abdel-Salam, and E. Mansour, "Electric field and corona threshold levels on HV biopolar transmission lines-calculations vs. experiment ," IEEE Trans. PAS, Vol. 77, 236-3, 1977.

25. Sendaula, H. M., "Electric field induced by EHV transmission over irregular terrain," IEEE Trans. PAS, Vol. 102, No. 5, 1452-1458, 1983.

26. ERRI Transmission Line Reference Book 345 kV and Above, Fred Weidner and Sons, New York, NY, 1975.

27. Electric Power Research Institute (EPRI) Electric and Magnetic Fields Workstation (EMF WORKSTATION), Users Manual Version 2.5, 2007.

28. Deno, D. W. and L. E. Zaffanella, "Electrostatic effects of overhead transmission lines and stations," Transmission Line Reference Book: 345 kV and Above, 248-280, EPRI Report RP-68, Electric Power Research Institute, Palo Alto, Calif, 1975.

29. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media ," IEEE Tran. Antennas Propagation, Vol. 14, 302-307, 1966.
doi:10.1002/bem.2250130706

30. Gandhi, O. P. and J. Y. Chen, "Numerical dosimetry at power-line frequencies using anatomically based models," Bielectromagnetics J. Supplement, Vol. 1, 43-60, 1992.

31. The U.S. National Library of Medicine, The Visible Human Project, http://www.nlm.nih.gov/research/visible/visible human.html.

32. Maalej, N. M., T. K. Abdel-Galil, M. A. Abdul-Majeed, and I. O. Habiballah, Organ Dosimetry for a Worker Standing Under 132 kV Power Line, World Congress on Medical Physics and Biomedical Engineering, Vol. 14, 2660-2663, 2007.
doi:10.1109/JPROC.2009.2031668

33. Maalej, N. M., C. A. Belhadj, T. K. Abdel-Galil, and I. O. Habiballah, "Visible human utilization to render induced electric field and current density images inside the human," IEEE Proceedings, Vol. 97, No. 12, 2053-2059, 2009.
doi:10.1002/(SICI)1521-186X(1997)18:7<478::AID-BEM3>3.0.CO;2-#

34. Dawson, T. W., K. Caputa, and M. A. Stuchly, "Influence of human model resolution of computed currents induced in organs by 60 Hz magnetic fields," Bioelectromagnetics, Vol. 18, 478-490, 1997.
doi:10.1088/0031-9155/41/11/002

35. Gabriel, S. R., W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: Measurements in the frequency range 10 Hz-20 GHz ," Phys. Med. Biol., Vol. 41, 2251-2269, 1996.