Vol. 18
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-11-07
Wideband Traveling Wave Koch Dipole Antenna
By
Progress In Electromagnetics Research C, Vol. 18, 103-110, 2011
Abstract
In this paper, a traveling wave Koch dipole antenna is proposed. The antenna is an amalgamation of traveling wave antennas that require large elctrical lengths and fractal curves that are known for excellent form factor characteristics. The antenna is analyzed using a Mom code. The antenna exhibits an impedance bandwidth that is more than 10:1 for VSWR < 3:1. A comparision of simulated and measured results are presented. The traveling wave fractal antenna has many potential applications in communications and electronics warfare.
Citation
Sukh Das Ahirwar, Y. Purushottam, Khumanthem Takeshore, and Chandana Sairam, "Wideband Traveling Wave Koch Dipole Antenna," Progress In Electromagnetics Research C, Vol. 18, 103-110, 2011.
doi:10.2528/PIERC10102701
References

1. Maclean, J. S., "A re-examination of the fundamental limitations on the radiation Q of electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 44, 673-676, May 1996.

2. Puente, C., R. Pous, J. Romeu, X. Gracia, and F. Benitez, "Fractal multiband antenna based on the sierpinski gasket," IEE Electronics Letters, Vol. 32, No. 1, 1-2, Jan. 1996.
doi:10.1049/el:19960033

3. Romeu, J. and J. Soler, "Generalized Sierpinski fractal multiband antenna," IEEE Transactions on Antennas and Propagation, Vol. 49, 1237-1239, Aug. 2001.
doi:10.1109/8.943320

4. Tang, P. W. and P. F. Wahid, "Hexagonal fractal multiband antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 3, No. 1, 111-112, Dec. 2004.
doi:10.1109/LAWP.2004.829989

5. Song, C. T. P., P. S. Hall, and H. Ghafouri-Shiraz, "Multiband multiple ring monoole antennas," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 4, 722-729, Apr. 2003.
doi:10.1109/TAP.2003.811097

6. Werner, D. H., R. L. Haupt, and P. L. Werner, "Fractal antenna engineering: The theory and design of fractal antenna arrays," IEEE Antennas and Propagation Magazine, Vol. 41, No. 5, 37-58, Oct. 1999.
doi:10.1109/74.801513

7. Anguera, J., C. Puente, C. Borja, and J. Soler, "Fractal-shaped antennas: A review," Encyclopedia of RF and Microwave Engineering, Vol. 2, 1620-1635, Edited by Professor Kai Chang, Wiley, 2005.

8. Gianvittorio, J. P. and Y. Rahmat-Samii, "Fractal antennas: A novel antenna miniaturization technique, and applications," IEEE Antennas and Propagation Magazine, Vol. 44, No. 1, 20-36, Feb. 2002.
doi:10.1109/74.997888

9. Anguera, J., E. Martínez, C. Puente, C. Borja, and J. Soler, "Broadband dual-frequency microstrip patch antenna with modified Sierpinski fractal geometry," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 1, 66-73, Jan. 2004.
doi:10.1109/TAP.2003.822433

10. Anguera, J., C. Puente, C. Borja, R. Montero, and J. Soler, "Small and high directivity bowtie patch antenna based on the Sierpinski fractal," Microwave and Optical Technology Letters, Vol. 31, No. 3, 239-241, Nov. 2001.
doi:10.1002/mop.1407

11. Anguera, J., C. Puente, E. Martínez, and E. Rozan, "The fractal Hilbert monopole: A two-dimensional wire," Microwave and Optical Technology Letters, Vol. 36, No. 2, 102-104, Jan. 2003.
doi:10.1002/mop.10687

12. Yeo, U. B., J. N. Lee, J. K. Park, H. S. Lee, and H. S. Kim, "An ultra-wideband antenna design using sierpinski sieve fractal," Journal of Electromagnetics Waves and Applications, Vol. 22, No. 12, 1713-1723, 2008.
doi:10.1163/156939308786390148

13. Aggarwal, A. and M. V. Kartikeyan, "Pythagoras tree: A fractal patch antenna for multi frequency and ultra-wide bandwidth operations," Progress In Electromagnetics Research C, Vol. 16, 25-35, 2010.
doi:10.2528/PIERC10062206

14. Azari, A. and J. Row, "Ultrawide band fractal microstrip antenna design," Progress In Electromagnetics Research C, Vol. 2, 7-12, 2008.
doi:10.2528/PIERC08031005

15. Saidatul, N. A., A. A. H. Azremi, R. B. Ahmad, J. P. Soh, and F. Malek, "Multiband fractal planar inverted F-antenna for mobile phone applications," Progress In Electromagnetics Research B, Vol. 14, 127-148, 2009.
doi:10.2528/PIERB09030802

16. Salmasy, M. P., F. Hojat Kasmani, and M. N. Azarmanesh, "A novel broadband fractal Sierpinski shaped microstrip antenna," Progress In Electromagnetics Research C, Vol. 4, 179-190, 2008.

17. Kazim, M. N. A., M. K. A. Rahim, H. A. Majid, O. B. Ayop, M. Abu, and F. Zubir, "Log periodic fractal koch antenna for UHF band applications," Progress In Electromagnetics Research, Vol. 100, 201-218, 2010.

18. Lamecki, A. and P. Debicki, "Broadband properties of a Minkowski fractal curve antenna," 14th International Conference on Microwaves, Radar and Wireless Communications, Vol. 3, 785-788, May 2002.

19. Song, C. T. P., P. S. Hall, H. Ghafouri-Shiraz, and D. Wake, "Fractal stacked monopole with very wide bandwidth," IEE Elecronics Letters, Vol. 35, No. 12, 945-946, 1999.
doi:10.1049/el:19990634

20. Vinoy, K. J., K. A. Jose, and V. K. Varadan, "On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using Koch curves," IEEE Transaction on Antennas and Propagation, Vol. 51, No. 9, Sep. 2003.
doi:10.1109/TAP.2003.816352

21. Altschuler, E. E., "The traveling wave linear antenna," IEEE Transaction on Antennas and Propagation, Vol. 9, No. 4, 324-329, 1961.
doi:10.1109/TAP.1961.1145026