Vol. 17
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-11-04
Spiking Neural Networks for Breast Cancer Classification Using Radar Target Signatures
By
Progress In Electromagnetics Research C, Vol. 17, 79-94, 2010
Abstract
Recent studies have shown that the dielectric properties of normal breast tissue vary considerably. This dielectric heterogeneity may mean that the identification of tumours using Ultra Wideband Radar imaging alone may be quite difficult. Significantly, since the dielectric properties of benign tissue were shown to overlap with those of malignant, breast tumour classification using traditional UWB Radar imaging algorithms could be very problematic. Rather than simply examining the dielectric properties of scatterers within the breast, other features of scatterers must be used for classification. Radar Target Signatures have been previously used to classify tumours due to the significant difference in size, shape and surface texture between benign and malignant tumours. This paper investigates Spiking Neural Networks (SNNs) applied as a novel tumour classification method. This paper will describe the creation of 3D tumour models, the generation of representative backscatter, the application of a feature extraction method and the use of SNNs to classify tumours as either benign or malignant. The performance of the SNN classifier is shown to outperform existing UWB Radar classification algorithms.
Citation
Brian McGinley, Martin O'Halloran, Raquel Cruz Conceicao, Fearghal Morgan, Martin Glavin, and Edward Jones, "Spiking Neural Networks for Breast Cancer Classification Using Radar Target Signatures," Progress In Electromagnetics Research C, Vol. 17, 79-94, 2010.
doi:10.2528/PIERC10100202
References

1. Dixon, M. J., ABC of Breast Diseases, Wiley-Blackwell, 2006.

2. Nass, S. L., I. C. Henderson, J. C. Lashof, "Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer," National Academy Press, 2001.

3. Bird, R. E., T. W. Wallace, and B. C. Yankaskas, "Analysis of cancers missed at screening mammograph," Radiology, Vol. 184, 613-617, 1992.

4. Huynh, P. H., A. M. Jarolimek, and S. Daye, "The false-negative mammogram," RadioGraphics, Vol. 18, 1137-1154, 1998.

5. Elmore, J. G., M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, "Ten-year risk of false positive screening mammograms and clinical breast examinations," New Eng. J. Med., Vol. 338, No. 16, 1089-1096, 1998.

6. Hall, F. M., J. M. Storella, D. Z. Silverstone, and G. Wyshak, "Non-palpaple breast-lesions, recommendations for biopsy based on suspicion of carcinoma at mammography," Radiology, Vol. 167, No. 2, 353-358, 1988.

7. Wang, L., X. Zhao, H. Sun, and G. Ku, "Microwave-induced acoustic imaging of biological tissues," Rev. Sci. Instrum., Vol. 70, No. 9, 3744-3748, 1991.

8. Li, D., P. M. Meaney, T. Raynolds, S. A. Pendergrass, M. W. Fanning, and K. D. Paulsen, "Parallel-detection microwave spectroscopy system for breast cancer imaging," Rev. Sci. Instrum., Vol. 75, No. 7, 2305-2313, 2004.

9. Kruger, R. A., K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434MHz --- Feasibility study," Radiology, Vol. 216, No. 1, 279-283, 2000.

10. Bulyshev, A., S. Y. Semenov, A. E. Souvorov, R. H. Svenson, A. G. Nazorov, Y. E. Sizov, and G. P. Tatsis, "Computational modeling of three-dimensional microwave tomography of breast cancer ," IEEE Trans. Biomed. Eng., Vol. 48, No. 9, 1053-1056, Sep. 2001.

11. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, 1841-1853, Nov. 2000.

12. Meaney, P. M., K. D. Paulsen, J. T. Chang, M. W. Fanning, and A. Hartov, "Nonactive antenna compensation for fixed-array microwave imaging: Part II --- Imaging results ," IEEE Trans. Med. Imag., Vol. 18, No. 6, 508-518, Jun. 1999.

13. Souvorov, A. E., A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, and G. P. Tatis, "Two-dimensional analysis of a microwave °at antenna array for breast cancer tomography," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 8, 1413-1415, Aug. 2000.

14. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Trans. Biomed. Eng., Vol. 45, No. 12, 1470-1479, 1998.

15. Daniels, D. J., "Surface Penetrating Radar," IEE Press, London, 1996.

16. Hagness, S. C., A. Taflove, and J. E. Bridges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna-array element," IEEE Trans. Antennas and Propagat., Vol. 47, No. 5, 783-791, May 1999.

17. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 49, No. 8, 812-822, Aug. 2002.

18. Fear, E. C. and M. A. Stuchly, "Microwave system for breast tumor detection," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 11, 470-472, Nov. 1999.

19. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 3, 887-892, Mar. 2003.

20. Fear, E., J. Sill, and M. Stuchly, "Microwave system for breast tumor detection: Experimental concept evaluation," IEEE AP-S International Symposium and USNC/URSI Radio Science Meeting, Vol. 1, 819-822, San Antonio, Texas, Jun. 2002.

21. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 3, 130-132, 2001.

22. Bond, E. J., X. Li, S. C. Hagness, and B. D. V. Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer ," IEEE Trans. Antennas and Propagat., Vol. 8, 1690-1705, Aug. 2003.

23. Xie, Y., B. Guo, J. Li, and P. Stoica, "Novel multistatic adaptive microwave imaging methods for early breast cancer detection," EURASIP J. Appl. Si. P., Vol. 2006, Article ID: 91961, 1-13, 2006.

24. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," PIERS Online, Vol. 1, No. 3, 350-353, Hangzhou, China, 2005.

25. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries ," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.

26. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.

27. O'Halloran, M., M. Glavin, and E. Jones, "Effects of fibroglan-dular tissue distribution on data-independent beamforming algorithms," Progress In Electromagnetics Research, Vol. 97, 141-158, 2009.

28. Chen, Y., E. Gunawan, K. S. Low, S. Wang, C. Soh, and J. Lavanya, "Effect of lesion morphology on microwave signature in ultra-wideband breast imaging: A preliminary two-dimensional investigation," IEEE Antennas and Propagation Society International Symposium, 2168-2171, 2007.

29. Chen, Y., I. Craddock, and P. Kosmas, "Feasibility study of lesion classification via contrast-agent-aided uwb breast imaging," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 5, 1003-1007, 2010.

30. Chen, Y., I. Craddock, P. Kosmas, M. Ghavami, and P. Rapajic, "Application of the mimo radar technique for lesion classification in UWB breast cancer detection," 17th European Signal Processing Conference (EUSIPCO), 759-763, 2009.

31. Chen, Y., I. J. Craddock, P. Kosmas, M. Ghavami, and P. Rapajic, "Multiple-input multiple-output radar for lesion classification in ultrawideband breast imaging ," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 1, 187-201, 2010.

32. Chen, Y., E. Gunawan, K. S. Low, S. C. Wang, C. Soh, and T. Choudary, "Effect of lesion morphology on microwave signature in 2-D ultra-wideband breast imaging," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 8, 2011-2021, 2008.

33. Conceicao, R. C., D. Byrne, M. O'Halloran, E. Jones, and M. Glavin, "Investigation of classifiers for early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research, Vol. 105, 295-311, 2010.

34. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Support vector machines for the classification of early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research B, Vol. 23, 311-327, 2010.

35. Davis, S. K., B. D. V. Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband backscatter," IEEE Trans. Biomed. Eng., Vol. 55, No. 1, 237-246, 2008.

36. Nguyen, M. and R. Rangayyan, "Shape analysis of breast masses in mammograms via the fractial dimension," IEEE Engineering in Medicine and Biology 27th Annual Conference, 3210-3213, 2005.

37. Muinonen, K., "Introducing the gaussian shape hypothesis for asteroids and comets," Astronomy and Astrophysics, Vol. 332, 1087-1098, 1998.

38. Muinonen, K., Light Scattering by Stochastically Shaped Particles, Chapter 11, Academic Press, 2000.

39. Taflove, A. and S. C. Hagness, "Computational Electrodynamics: The Finite-difference Time-domain Method," Artech House Publishers, Jun. 2005.

40. Koch, C. and G. Laurent, "Complexity and the nervous system," Science, Vol. 284, No. 5411, 96-98, Washington, DC, 1999.

41. Maass, W., "Computation with spiking neurons," The Handbook of Brain Theory and Neural Networks, 1080-1083, 2003.

42. Gerstner, W. and W. Kistler, Spiking Neuron Models, Cambridge University Press, New York, 2002.

43. Maass, W., "Networks of spiking neurons: The third generation of neural network models," Neural Networks, Vol. 10, No. 9, 1659-1671, 1997.

44. Bohte, S., J. Kok, and H. La Poutre, "Error-backpropagation in temporally encoded networks of spiking neurons," Neurocomput Ing., Vol. 48, No. 1-4, 17-37, 2002.

45. Holland, J., Adaptation in Natural and Artificial Systems, MIT Press, Cambridge, MA, 1992.

46. Yao, X., "Evolving artificial neural networks," Proceedings of the IEEE, Vol. 87, No. 9, 1423-1447, 1999.

47. Hagras, H., A. Pounds-Cornish, M. Colley, V. Callaghan, and G. Clarke, "Evolving spiking neural network controllers for autonomous robots," IEEE International Conference on Robotics and Automation, Vol. 5, 4620-4626, 2004.

48. Floreano, D., N. Schoeni, G. Caprari, and . Blynel, "Evolutionary bits `n' spikes," Proceedings of the Eighth International Conference on Artificial Life, 335-344, 2003.

49. Belatreche, A., L. P. Maguire, M. McGinnity, and Q. X. Wu, "Evolutionary design of spiking neural networks," New Mathematics and Natural Computation (NMNC), Vol. 2, No. 03, 237-253, 2006.

50. Rocke, P., B. McGinley, J. Maher, F. Morgan, and J. Harkin, "Investigating the suitability of FPAAs for evolved hardware spiking neural networks," Proceedings of Evolvable Systems: From Biology to Hardware, 118-126, 2008.

51. Wold, H., "Estimation of principal components and related models by iterative least squares," Multivariate Analysis, K. Krishnaiah, Ed., Academic Press, New York, 1996.

52. Pande, S., F. Morgan, C. S., B. McGinley, S. Carrillo, L. McDaid, and J. Harkin, "Embrace-sysc for analysis of noc-based spiking neural network architecture," IEEE System on a Chip Symposium SOC), 2010.

53. Davis, S. K., S. C. Hagness, and B. D. V. Veen, "Microwave-based detection of breast cancer using the generalized likelihood ratio test ," IEEE Workshop on Statistical Processing, 617-620, 2003.

54. Theodoridis, S. and K. Koutroumbas, Pattern Recognition, Academic Press, 2006.

55. Hornik, K., M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks,, Vol. 2, No. 5, 359-366, 1989.