1. Dixon, M. J., ABC of Breast Diseases, Wiley-Blackwell, 2006.
2. Nass, S. L., I. C. Henderson, J. C. Lashof, "Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer," National Academy Press, 2001.
3. Bird, R. E., T. W. Wallace, and B. C. Yankaskas, "Analysis of cancers missed at screening mammograph," Radiology, Vol. 184, 613-617, 1992.
4. Huynh, P. H., A. M. Jarolimek, and S. Daye, "The false-negative mammogram," RadioGraphics, Vol. 18, 1137-1154, 1998.
5. Elmore, J. G., M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, "Ten-year risk of false positive screening mammograms and clinical breast examinations," New Eng. J. Med., Vol. 338, No. 16, 1089-1096, 1998.
6. Hall, F. M., J. M. Storella, D. Z. Silverstone, and G. Wyshak, "Non-palpaple breast-lesions, recommendations for biopsy based on suspicion of carcinoma at mammography," Radiology, Vol. 167, No. 2, 353-358, 1988.
7. Wang, L., X. Zhao, H. Sun, and G. Ku, "Microwave-induced acoustic imaging of biological tissues," Rev. Sci. Instrum., Vol. 70, No. 9, 3744-3748, 1991.
8. Li, D., P. M. Meaney, T. Raynolds, S. A. Pendergrass, M. W. Fanning, and K. D. Paulsen, "Parallel-detection microwave spectroscopy system for breast cancer imaging," Rev. Sci. Instrum., Vol. 75, No. 7, 2305-2313, 2004.
9. Kruger, R. A., K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434MHz --- Feasibility study," Radiology, Vol. 216, No. 1, 279-283, 2000.
10. Bulyshev, A., S. Y. Semenov, A. E. Souvorov, R. H. Svenson, A. G. Nazorov, Y. E. Sizov, and G. P. Tatsis, "Computational modeling of three-dimensional microwave tomography of breast cancer ," IEEE Trans. Biomed. Eng., Vol. 48, No. 9, 1053-1056, Sep. 2001.
11. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, 1841-1853, Nov. 2000.
12. Meaney, P. M., K. D. Paulsen, J. T. Chang, M. W. Fanning, and A. Hartov, "Nonactive antenna compensation for fixed-array microwave imaging: Part II --- Imaging results ," IEEE Trans. Med. Imag., Vol. 18, No. 6, 508-518, Jun. 1999.
13. Souvorov, A. E., A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, and G. P. Tatis, "Two-dimensional analysis of a microwave °at antenna array for breast cancer tomography," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 8, 1413-1415, Aug. 2000.
14. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Trans. Biomed. Eng., Vol. 45, No. 12, 1470-1479, 1998.
15. Daniels, D. J., "Surface Penetrating Radar," IEE Press, London, 1996.
16. Hagness, S. C., A. Taflove, and J. E. Bridges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna-array element," IEEE Trans. Antennas and Propagat., Vol. 47, No. 5, 783-791, May 1999.
17. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 49, No. 8, 812-822, Aug. 2002.
18. Fear, E. C. and M. A. Stuchly, "Microwave system for breast tumor detection," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 11, 470-472, Nov. 1999.
19. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 3, 887-892, Mar. 2003.
20. Fear, E., J. Sill, and M. Stuchly, "Microwave system for breast tumor detection: Experimental concept evaluation," IEEE AP-S International Symposium and USNC/URSI Radio Science Meeting, Vol. 1, 819-822, San Antonio, Texas, Jun. 2002.
21. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 3, 130-132, 2001.
22. Bond, E. J., X. Li, S. C. Hagness, and B. D. V. Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer ," IEEE Trans. Antennas and Propagat., Vol. 8, 1690-1705, Aug. 2003.
23. Xie, Y., B. Guo, J. Li, and P. Stoica, "Novel multistatic adaptive microwave imaging methods for early breast cancer detection," EURASIP J. Appl. Si. P., Vol. 2006, Article ID: 91961, 1-13, 2006.
24. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," PIERS Online, Vol. 1, No. 3, 350-353, Hangzhou, China, 2005.
25. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries ," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
26. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
27. O'Halloran, M., M. Glavin, and E. Jones, "Effects of fibroglan-dular tissue distribution on data-independent beamforming algorithms," Progress In Electromagnetics Research, Vol. 97, 141-158, 2009.
28. Chen, Y., E. Gunawan, K. S. Low, S. Wang, C. Soh, and J. Lavanya, "Effect of lesion morphology on microwave signature in ultra-wideband breast imaging: A preliminary two-dimensional investigation," IEEE Antennas and Propagation Society International Symposium, 2168-2171, 2007.
29. Chen, Y., I. Craddock, and P. Kosmas, "Feasibility study of lesion classification via contrast-agent-aided uwb breast imaging," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 5, 1003-1007, 2010.
30. Chen, Y., I. Craddock, P. Kosmas, M. Ghavami, and P. Rapajic, "Application of the mimo radar technique for lesion classification in UWB breast cancer detection," 17th European Signal Processing Conference (EUSIPCO), 759-763, 2009.
31. Chen, Y., I. J. Craddock, P. Kosmas, M. Ghavami, and P. Rapajic, "Multiple-input multiple-output radar for lesion classification in ultrawideband breast imaging ," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 1, 187-201, 2010.
32. Chen, Y., E. Gunawan, K. S. Low, S. C. Wang, C. Soh, and T. Choudary, "Effect of lesion morphology on microwave signature in 2-D ultra-wideband breast imaging," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 8, 2011-2021, 2008.
33. Conceicao, R. C., D. Byrne, M. O'Halloran, E. Jones, and M. Glavin, "Investigation of classifiers for early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research, Vol. 105, 295-311, 2010.
34. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Support vector machines for the classification of early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research B, Vol. 23, 311-327, 2010.
35. Davis, S. K., B. D. V. Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband backscatter," IEEE Trans. Biomed. Eng., Vol. 55, No. 1, 237-246, 2008.
36. Nguyen, M. and R. Rangayyan, "Shape analysis of breast masses in mammograms via the fractial dimension," IEEE Engineering in Medicine and Biology 27th Annual Conference, 3210-3213, 2005.
37. Muinonen, K., "Introducing the gaussian shape hypothesis for asteroids and comets," Astronomy and Astrophysics, Vol. 332, 1087-1098, 1998.
38. Muinonen, K., Light Scattering by Stochastically Shaped Particles, Chapter 11, Academic Press, 2000.
39. Taflove, A. and S. C. Hagness, "Computational Electrodynamics: The Finite-difference Time-domain Method," Artech House Publishers, Jun. 2005.
40. Koch, C. and G. Laurent, "Complexity and the nervous system," Science, Vol. 284, No. 5411, 96-98, Washington, DC, 1999.
41. Maass, W., "Computation with spiking neurons," The Handbook of Brain Theory and Neural Networks, 1080-1083, 2003.
42. Gerstner, W. and W. Kistler, Spiking Neuron Models, Cambridge University Press, New York, 2002.
43. Maass, W., "Networks of spiking neurons: The third generation of neural network models," Neural Networks, Vol. 10, No. 9, 1659-1671, 1997.
44. Bohte, S., J. Kok, and H. La Poutre, "Error-backpropagation in temporally encoded networks of spiking neurons," Neurocomput Ing., Vol. 48, No. 1-4, 17-37, 2002.
45. Holland, J., Adaptation in Natural and Artificial Systems, MIT Press, Cambridge, MA, 1992.
46. Yao, X., "Evolving artificial neural networks," Proceedings of the IEEE, Vol. 87, No. 9, 1423-1447, 1999.
47. Hagras, H., A. Pounds-Cornish, M. Colley, V. Callaghan, and G. Clarke, "Evolving spiking neural network controllers for autonomous robots," IEEE International Conference on Robotics and Automation, Vol. 5, 4620-4626, 2004.
48. Floreano, D., N. Schoeni, G. Caprari, and . Blynel, "Evolutionary bits `n' spikes," Proceedings of the Eighth International Conference on Artificial Life, 335-344, 2003.
49. Belatreche, A., L. P. Maguire, M. McGinnity, and Q. X. Wu, "Evolutionary design of spiking neural networks," New Mathematics and Natural Computation (NMNC), Vol. 2, No. 03, 237-253, 2006.
50. Rocke, P., B. McGinley, J. Maher, F. Morgan, and J. Harkin, "Investigating the suitability of FPAAs for evolved hardware spiking neural networks," Proceedings of Evolvable Systems: From Biology to Hardware, 118-126, 2008.
51. Wold, H., "Estimation of principal components and related models by iterative least squares," Multivariate Analysis, K. Krishnaiah, Ed., Academic Press, New York, 1996.
52. Pande, S., F. Morgan, C. S., B. McGinley, S. Carrillo, L. McDaid, and J. Harkin, "Embrace-sysc for analysis of noc-based spiking neural network architecture," IEEE System on a Chip Symposium SOC), 2010.
53. Davis, S. K., S. C. Hagness, and B. D. V. Veen, "Microwave-based detection of breast cancer using the generalized likelihood ratio test ," IEEE Workshop on Statistical Processing, 617-620, 2003.
54. Theodoridis, S. and K. Koutroumbas, Pattern Recognition, Academic Press, 2006.
55. Hornik, K., M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks,, Vol. 2, No. 5, 359-366, 1989.