Vol. 17
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-11-07
Numerical Analysis of the Influence of Stir on Water During Microwave Heating
By
Progress In Electromagnetics Research C, Vol. 17, 105-119, 2010
Abstract
In order to study the information of temperature with stir during microwave heating on fluid, the coupled Maxwell's equations, fluid field equations and heat transport equations were solved using Finite-Element Method (FEM). The microwave heating on fluid was analysed with high power, different dynamic viscosities and relative complex permittivities. The results show that the highest temperature occurs on the interface of the fluid and air. When the fluid is heated under high microwave power, speeding up the stir can improve the uniform of temperature, but if the rotate speed is fast enough, going on speeding up the stir cannot decrease the temperature difference any more. When the value of the imaginary part of relative complex permittivity which accounts for dielectric losses or the dynamic viscosity increases, the temperature in the water rises very quickly, and the temperature difference is very large even if the rotate speed is fast enough.
Citation
Jian Yan, Xiaoqing Yang, and Ka-Ma Huang, "Numerical Analysis of the Influence of Stir on Water During Microwave Heating," Progress In Electromagnetics Research C, Vol. 17, 105-119, 2010.
doi:10.2528/PIERC10092702
References

1. Tavakoli, M. H., H. Karbaschi, and F. Samavat, "Computational modeling of induction heating process," Progress In Electromagnetics Research Letters, Vol. 11, 93-102, 2009.
doi:10.2528/PIERL09071509

2. Li, W., M. A. Ebadian, T. L. White, and R. G. Grubb, "Heat transfer within a concrete slab applying the microwave decontamination process ," ASME J. Heat Transfer, Vol. 115, 42-50, 1993.
doi:10.1115/1.2910667

3. Clemens, J. and C. Saltiel, "Numerical modeling of materials processing in microwave furnaces," Heat Mass Transfer, Vol. 39, No. 8, 1665-1675, 1996.
doi:10.1016/0017-9310(95)00255-3

4. Dibben, D. C. and A. C. Metaxas, "Frequency domain vs. time domain finite element methods for calculation of fields in multimode cavities," IEEE Trans. Magn., Vol. 33, No. 2, 1468-1471, 1997.
doi:10.1109/20.582537

5. Zhao, H. and I. W. Turner, "The use of a coupled computational model for studying the microwave heating of wood," Appl. Math. Modeling, Vol. 24, 183-197, 2000.
doi:10.1016/S0307-904X(99)00034-7

6. Bows, J. R., M. L. Patrick, R. Janes, A. C. Metaxas, et al. "Microwave phase control heating," Food Sci. Technol., Vol. 34, 295-304, 1999.

7. Zhao, H., I. W. Turner, and G. Torgovnikov, "An experimental and numerical investigation of the microwave heating of wood," Microwave Power Electromagn. Energy, Vol. 33, 121-133, 1998.

8. Watanuki, J., Fundamental study of microwave heating with rectangular wave guide, M.S. Thesis, Nagaoka University of Technology, Japan, 1998 (in Japanese).

9. Ratanadecho, P., K. Aoki, and M. Akahori, "A numerical and experimental investigation of the modelling of microwave melting of frozen packed beds using a rectangular wave guide," Int. Comm. Heat Mass Transfer, Vol. 28, 751-762, 2001.
doi:10.1016/S0735-1933(01)00279-2

10. Huang, K. M., Z. Lin, and X. Q. Yang, "Numerical simulation of microwave heating on chemical reaction in dilute solution," Progress In Electromagnetics Research, Vol. 49, 273-289, 2004.
doi:10.2528/PIER04042803

11. Yang, X. Q. and K. M. Huang, "Study on the special effect of calcium sulfate crystallization under the irradiation of microwave," Journal of Inorganic Materials, Vol. 21, No. 2, 363-368, 2006.

12. Baker-Jarvis, J. and R. Inguva, "Dielectric heating of oilshales by monopoles and modified coaxial applicators," Journal of Microwave Power and Electromagnetic Energy, Vol. 23, No. 3, 160-170, 1984.

13. Mingos, D. M. P. and D. R. Baghurst, "Applications of microwave dielectric heating effects to synthetic problems in chemistry," Chemical Society Reviews, Vol. 20, No. 1, 1-47, 1991.
doi:10.1039/cs9912000001

14. Torres, F. and B. Jecko, "Complete FDTD analysis of microwave heating processes in frequency-dependent and temperature-dependent media," IEEE Microwave Theory and Techniques, Vol. 45, No. 1, 108-117, 1997.
doi:10.1109/22.552039