Vol. 16
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-10-26
New Bandpass Filters Using Half-Wavelength and Branch-Line Resonators
By
Progress In Electromagnetics Research C, Vol. 16, 241-249, 2010
Abstract
New cross-coupled bandpass filters using half-wavelength (λ/2) and branch-line resonators are proposed. The branch-line resonators are made of two quarter-wavelength (λ/4) resonators in which a shorted circuit is realized by one open stub. In the first case, a non-0°feed structure at the input and output resonators is used to produce one pair of transmission zeros near the passband to improve the selectivity. In the second case, good selectivity and improved stopband rejection can be achieved at the same time by utilizing a 0° feed structure. Specifically, the proposed filters can simplify the manufacturing process of the conventional cross-coupled filters using λ/2 and λ/4 resonators without increasing circuit area significantly.
Citation
Pu-Hua Deng, and Pin-Tang Chiu, "New Bandpass Filters Using Half-Wavelength and Branch-Line Resonators," Progress In Electromagnetics Research C, Vol. 16, 241-249, 2010.
doi:10.2528/PIERC10092306
References

1. Hong, J. S. and J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 11, 2099-2109, Nov. 1996.
doi:10.1109/22.543968

2. Hong, J. S. and M. J. Lancaster, "Theory and experiment of novel microstrip slow-wave open-loop resonator filters," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 12, 2358-2365, Dec. 1997.
doi:10.1109/22.643844

3. Hong, J. S. and M. J. Lancaster, "Cross-coupled microstrip hairpin-resonator filters," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 1, 118-122, Jan. 1998.
doi:10.1109/22.654931

4. Tsai, C. M., S. Y. Lee, and C. C. Tsai, "Performance of a planar filter using a 0º feed structure," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 10, 2362-2367, Oct. 2002..
doi:10.1109/TMTT.2002.803421

5. Fan, J. W., C. H. Liang, and X. W. Dai, "Design of cross-coupled dual-band filter with equal-length split-ring resonators," Progress In Electromagnetics Research, Vol. 75, 285-293, 2007.
doi:10.2528/PIER07060904

6. Xue, W., C. H. Liang, X. W. Dai, and J. W. Fan, "Design of miniature planar dual-band filter with 0± feed structures," Progress In Electromagnetics Research, Vol. 77, 493-499, 2007.
doi:10.2528/PIER07090502

7. Wen, S. and L. Zhu, "Numerical synthesis design of coupled resonator filters," Progress In Electromagnetics Research, Vol. 92, 333-346, 2009.
doi:10.2528/PIER09041102

8. Lin, W. J., C. S. Chang, J. Y. Li, D. B. Lin, L. S. Chen, and M. P. Houng, "A new approach of dual-band filters by stepped impedance simplified cascaded quadruplet resonators with slot coupling," Progress In Electromagnetics Research Letters, Vol. 9, 19-28, 2009.
doi:10.2528/PIERL09042801

9. Yang, R. Y., H. Kuan, C. Y. Hung, and C. S. Ye, "Design of dual- band bandpass filters using a dual feeding structure and embedded uniform impedance resonators," Progress In Electromagnetics Research, Vol. 105, 93-102, 2010.
doi:10.2528/PIER10042504

10. Wu, H. W., S. K. Liu, M. H. Weng, and C. H. Hung, "Compact microstrip bandpass filter with multispurious suppression," Progress In Electromagnetics Research, Vol. 107, 21-30, 2010.
doi:10.2528/PIER10061601

11. Wu, Y. L., C. Liao, and X. Z. Xiong, "A dual-wideband bandpass filter based on E-shaped microstrip SIR with improved upper-stopband performance," Progress In Electromagnetics Research, Vol. 108, 141-153, 2010.
doi:10.2528/PIER10071802

12. Chen, C. C., Y. R. Chen, and C. Y. Chang, "Miniaturized microstrip cross-coupled filters using quarter-wave or quasi-quarter-wave resonators," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 1, 120-131, Jan. 2003.
doi:10.1109/TMTT.2002.806924

13. Chang, C. Y. and C. C. Chen, "A novel coupling structure suitable for cross-coupled filters with folded quarter-wave resonators," IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 12, 517-519, Dec. 2003.
doi:10.1109/LMWC.2003.819957

14. Lin, S. C., P. H. Deng, Y. S. Lin, C. H. Wang, and C. H. Chen, "Wide-stopband microstrip bandpass filters using dissimilar quarter-wavelength stepped-impedance resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 3, 1011-1018, Mar. 2006.
doi:10.1109/TMTT.2005.864139

15. Lin, S. C., Y. S. Lin, and C. H. Chen, "Extended-stopband bandpass filters using both half- and quarter-wavelength resonators," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 1, 43-45, Jan. 2006.
doi:10.1109/LMWC.2005.860014

16. Deng, P. H., C. H. Wang, and C. H. Chen, "Novel broadside-coupled bandpass filters using both microstrip and coplanar-waveguide resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 10, 3746-3750, Oct. 2006.
doi:10.1109/TMTT.2006.881619

17. Lee, J. R., J. H. Cho, and S. W. Yun, "New compact bandpass filter using microstrip λ/4 resonators with open stub inverter," IEEE Microw. Wireless Compon. Lett., Vol. 10, No. 12, 526-527, Dec. 2000.