Vol. 17
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-11-17
Design and Investigation of Broadband Monopole Antenna Loaded with Non-Foster Circuit
By
Progress In Electromagnetics Research C, Vol. 17, 245-255, 2010
Abstract
The possibility of using non-Foster circuit to expand the bandwidth of a monopole antenna is investigated theoretically. Beginning with an inductor-loaded monopole antenna resonating at different frequencies by changing the value of the loaded inductor, we show that a frequency-dependent inductor is needed to enhance the bandwidth of the monopole antenna. The curve for the reactance of the frequency-dependent inductor versus frequency is fitted, which enlightens us to use a non-Foster reactive circuit to realize the frequency-dependent inductor. Based on the above studies, a monople antenna loaded with a non-Foster circuit is presented. Simulated results demonstrate that the input reactance of the loaded antenna becomes stable and approaches zero, which favors the impedance matching and extends the bandwidth to a certain extent. Finally, a passive (Foster) matching circuit is designed to improve the bandwidth further. A 0.69-m monopole antenna with 2.0:1 VSWR in the frequency range 30--150 MHz is designed and investigated.
Citation
Fei-Fei Zhang, Bao-Hua Sun, Xiaohui Li, Wei Wang, and Jin-Yuan Xue, "Design and Investigation of Broadband Monopole Antenna Loaded with Non-Foster Circuit," Progress In Electromagnetics Research C, Vol. 17, 245-255, 2010.
doi:10.2528/PIERC10081609
References

1. Harrison, Jr., C. W., "Monopole with inductance loading," IEEE Transactions on Antennas and Propagation, Vol. 11, 394-400, July 1963.
doi:10.1109/TAP.1963.1138059

2. Boag, A., A. Boag, E. Michielssen, and R. Mittra, "Design of electrically loaded wire antenna using genetic algorithms," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 5, 687-695, May 1996.
doi:10.1109/8.496255

3. Czerwinski, W. P., "On optimizing efficiency and bandwidth of inductively loaded antennas," IEEE Transactions on Antennas and Propagation, 811-812, September 1965.
doi:10.1109/TAP.1965.1138521

4. Chu, L. J., "Physical limitations of omni-directional antennas," J. Appl. Phys., Vol. 19, 1163-1175, 1948.
doi:10.1063/1.1715038

5. Sussman-Fort, S. E. and R. M. Rudish, "Non-Foster impedance matching of electrically-small antennas," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 8, 2230-2241, August 2009.
doi:10.1109/TAP.2009.2024494

6. Aberle, J. T., "Two-port representation of an antenna with application to non-Foster matching networks," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 5, 1218-1222, May 2008.
doi:10.1109/TAP.2008.922173

7. Ziolkowski, R. W., "An efficient, electrically small antenna designed for VHF and UHF applications," IEEE Antennas Wireless Propag. Lett., 217-220, 2008.
doi:10.1109/LAWP.2008.921635

8. Pomerleau, A. and M. Fournier, "Inductively loaded monopole," IEEE-GAP Symposium Digest, 81-84, 1972.

9. Linvill, J. G., "Transistor negative impedance converters," Proc. IRE, Vol. 41, 725-729, June 1953.

10. Brownlie, J. D., "On the stability properties of a negative impedance converter," IEEE Trans. Circuit Theory, Vol. 13, No. 1, 98-99, March 1966.

11. Hoskins, R. F., "Stability of negative impedance converters," Electron. Lett., Vol. 2, No. 9, 341, September 1966.
doi:10.1049/el:19660287

12. Sussman-Fort, S. E., "Gyrator-based biquad filters and negative impedance converters for microwaves," Int. J. RF and Microw. Comput.-Aided Engi., (Special Issue on Netw. Synthesis Method. Microw. De.), Vol. 8, No. 3, 86-101, March 1998.