Vol. 16
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-09-10
Numerical Optimization of Pitch Profile for Overall Efficiency Enhancement of a Space TWT
By
Progress In Electromagnetics Research C, Vol. 16, 37-50, 2010
Abstract
Obtaining higher efficiency during the development of space Traveling Wave Tubes (TWTs) is always one of the most important goals for scientists. In this paper, a scheme of obtaining the maximum theoretical overall efficiency is explored by optimizing the helix pitch profile of a TWT based on the collectability of spent beam. The collectability of the spent beam was evaluated by the maximum collector efficiency, and this maximum collector efficiency was employed to calculate the maximum theoretical overall efficiency. The energy distribution of the spent beam and the output power of TWTs were calculated by the 3-D large signal Beam-Wave Interaction Simulator (BWIS) of MTSS. The detailed design of a Ku-band helix TWT is described according to three optimization goals (theoretical overall efficiency, theoretical collector efficiency and electronic efficiency). The simulation results indicate that the optimization for high interaction circuit efficiency or collector efficiency by itself is not adequate to obtain maximum overall efficiency. The maximum theoretical overall efficiency of 77% was achieved via the optimization of slow wave structure for theoretical overall efficiency.
Citation
Hong-Xia Yi, Pu-Kun Liu, and Liu Xiao, "Numerical Optimization of Pitch Profile for Overall Efficiency Enhancement of a Space TWT," Progress In Electromagnetics Research C, Vol. 16, 37-50, 2010.
doi:10.2528/PIERC10070807
References

1. Duan, Z. Y., Y. B. Gong, Y. Y. Wei, W. X. Wang, B. I. Wu, and J. A. Kong, "Efficiency improvement of broadband helix traveling wave tubes using hybrid phase velocity tapering model," Journal of Electromagnetic Waves and Applications, Vol. 22, 1013-1023, 2008.

2. Zhu, Z. J., B. F. Jia, and D. M. Wan, "Efficiency improvement of helix traveling-wave tube," Journal of Electromagnetic Waves and Applications, Vol. 22, 1747-1756, 2008.

3. Komm, D. S., R. T. Benton, et al. "Advances in space TWT efficiencies," IEEE Trans. Electron Devices, Vol. 48, No. 1, Jan. 2001.

4. Srivastava, V. and R. G. Carter, "Design of helix slow wave structures for high efficiency TWTs," IEEE Trans. Electron Devices, Vol. 47, No. 12, Dec. 2000.

5. Wilson, J. D., "A simulated annealing algorithm for optimizing RF power efficiency in coupled-cavity traveling-wave tubes," IEEE Trans. Electron Devices, Vol. 44, No. 12, 2295-2299, 1997.

6. Duan, Z. Y., Y. B. Gong, Y. L. Mo, M. Y. Lü, Y. Y. Wei, and W. X. Wang, "Optimization design of helix pitch for efficiency to enhancement in the helix TWT," Chinese Physic Letter, Vol. 25, No. 3, 934-937, 2008.

7. Li, G. C., P. K. Liu, L. Xiao, and B. L. Hao, "Efficiency enhancement of helix traveling wave tube based on ε multi-objective evolutionary algorithm," J. Infrared Milli Terahz Waves, 2009.

8. Barker, R. J., J. H. Booske, N. C. Luhmann, et al. Modern Microwave and Millimeter-wave Power Electronics, 208-209, Willy-IEEE Press, Apr. 2005.

9. Abe, D. K., B. Levush, T. M. Antonsen, D. R. Whaley, and B. G. Danly, "Design of linear C-Band helix TWT for digital communications experiments using the christine suite of large-signal codes," IEEE Trans. Plasma Sci., Vol. 30, No. 3, Jun. 2002.

10. David, J. A., C. L. Kory, H. T. Tran, R. L. Ives, and D. Chernin, "Enhanced features for design of travelling wave tubes using christine-1D," IEEE Trans. Plasma Sci., Vol. 35, No. 4, Aug. 2007.

11. Ghosh, T. K. and R. G. Carter, "Optimization of multistage depressed collectors," IEEE Trans. Electron Devices, Vol. 54, No. 8, Aug. 2007.

12. Vaden, K. R., J. D. Wilson, and B. A. Bulson, "A simulated annealing algorithm for the optimization of multistage depressed collector efficiency," Proc. 3rd IEEE Int. Vac. Electron. Conf., 164-165, Apr. 23--25, 2002.

13. Xiao, L., Y.-H. Dong, X.-B. Su, and P.-K. Liu, "A multi-objective genetic algorithm for optimizing dispersion and coupling impedance in helix TWTs," The 7th IVEC 2006 & 6th IVESC, California, USA, 2006.

14. Razavi, S. M. J. and M. Khalaj-Amirhosseini, "Optimization an anechoic chamber with ray-tracing and genetic algorithms," Progress In Electromagnetics Research B, Vol. 9, 53-68, 2008.

15. Tokan, F. and F. Günes, "The multi-objective optimization of non-uniform linear phased arrays using the genetic algorithm," Progress In Electromagnetics Research B, Vol. 17, 135-151, 2009.

16. Li, B., Z. H. Yang, J. Q. Li, et al. "Theory and design of microwave-tube simulator," IEEE Trans. Electron Devices, Vol. 56, No. 5, May 2009.

17. Malek, F., "The Analytical design of a folded aaveguide traveling wave tube and small signal gain analysis using Madey's theorem," Progress In Electromagnetics Research, Vol. 98, 137-162, 2009.

18. Seshadri, R., S. Ghosh, A. Bhansiwal, S. Kamath, and P. K. Jain, "A simple analysis of helical slow-wave structure loaded by dielectric embedded metal segments for wideband traveling-wave tubes," Progress In Electromagnetics Research B, Vol. 20, 303-320, 2010.

19. Deb, K. and R. B. Agrawal, "Simulated binary crossover for continuous search space," Complex Systems, Vol. 9, 115-148, 1995.

20. Manikas, T. W. and J. T. Cain, Genetic Algorithms vs. Simulated Annealing: A Comparison of Approaches for Solving the Circuit Partitioning Problem, University of Pittsburgh, Department of Electrical Engineering, May 1996.

21. Mann, J. W. and G. D. Smith, "A comparison of heuristics for telecommunications traffic routing," Modern Heuristic Search Methods, John Wiley & Sons, 1996.