Vol. 16
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-09-16
Electromagnetic Simulation and Characterization a Metal Ceramic Package for Packaging of High Isolation Switches
By
Progress In Electromagnetics Research C, Vol. 16, 111-125, 2010
Abstract
Packaging of planar MMICs poses a unique challenge at microwave frequencies as the dimensions of the encapsulating cavity are comparable to wavelength at the operational frequencies. In addition, the effect of ground loops (caused by bond wires exposed to ground over extended length due to gaps between interconnects) deteriorates the situation even further in circuits like MMIC switches requiring high isolation between ports. The ground loops cause reflections thereby deteriorating the insertion loss figure of merit. This paper presents optimization of design of a metal ceramic package used for packaging an SPDT MMIC switch working in the frequency range of 5-6 GHz. The microwave performance of the package was simulated using EM simulation with parameters including cavity dimensions, port placement, gaps between interconnect lines, package feed-thrus and MMIC chip pads. Detailed characterization of the bare package and packaged SPDT MMIC done later shows a good match between the simulated and measured performance. The SPDT MMIC performance degradation was arrested by improvement in the package structure and it showed insertion loss of -1.6dB and input/output (I/O) return losses of ~16dB in the new package as compared to the values of -2.1dB insertion loss and -12dB I/O return losses in the original package. The port-to-port isolation remained unchanged (~40 dB in both cases) as it is governed by the MMIC assembly inside the package rather than the conditions at the I/O interfaces in this kind of large sized packages.
Citation
Sandeep Chaturvedi, Sangam V. Bhalke, G. Sai Saravanan, and Shiban Kishen Koul, "Electromagnetic Simulation and Characterization a Metal Ceramic Package for Packaging of High Isolation Switches," Progress In Electromagnetics Research C, Vol. 16, 111-125, 2010.
doi:10.2528/PIERC10061406
References

1. Uda, H., T. Hirai, H. Tominaga, K. Nogawa, T. Sawai, S. Higashino, and Y. Harada, "A very high isolation GaAs SPDT switch IC sealed in an ultra compact plastic package," 17th Annual IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1995. Technical Digest, 132-135, Oct. 29--Nov. 1, 1995.

2. Uda, H., T. Hirai, H. Tominaga, K. Nogawa, T. Sawai, T. Higashino, and Y. Harada, "Development of ultra-compact plastic-packaged high-isolation GaAs SPDT switch," IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, Vol. 19, No. 1, 182-187, Feb. 1996.

3. Xiao, Q., G. Samiotes, T. Galluccio, and B. Rizzi, "A high performance DC-20 GHz SPDT switch in a low cost plastic QFN package," European Microwave Integrated Circuits Conference, 2009. EuMIC 2009, 320-323, Sep. 28--29, 2009.

4. Jessie, D. and L. E. Larson, "An X-band small outline leaded plastic package for MMIC applications," IEEE Transactions on Advanced Packaging, Vol. 25, No. 3, 439-447, Aug. 2002.

5. Ishitsuka, F. and N. Sato, "Low-cost, high-performance package for a multi-chip MMIC module," 10th Annual IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1988. Technical Digest 1988, 221-224, Nov. 6--9, 1988.

6. Decker, D. R., H. M. Olson, R. Tatikola, R. Gutierrez, and N. R. Mysoor, "Multichip MMIC package for X and Ka bands," IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, Vol. 20, No. 1, 27-33, Feb. 1997.

7. Liang, T., J. A. Pla, P. H. Aaen, and M. Mahalingam, "Equivalent-circuit modeling and verification of metal-ceramic packages for RF and microwave power transistors," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 6, 709-714, Jun. 1999.

8. Jackson, R. W., "An electromagnetic model for determining resonance frequencies of low cost MMIC packages," IEEE Transactions on Microwave Theory and Techniques, 1816-1819, Sep. 1994.

9. Olson, H. M., "A compact model for predicting the isolation of ports in a closed rectangular microchip package," IEEE Transactions on Microwave Theory and Techniques, 81-86, Jan. 1996.

10. Ndagijimana, F., J. Engdahl, A. Ahmadouche, and J. Chilo, "The inductive connection effects of a mounted SPDT in a plastic SO8 package," IEEE MTT-S Digest, 91-94, 1993.

11. Cascade SUMMIT 10600 Thermal Probe Station, Cascade MicroTech, USA, www.cmicro.com.

12. CST Microwave Studio, version 5.0, 3D elecromagnetic simulation software, Computer Simulation Technology, GMBH.

13. Sai Saravanan, G., S. Chaturvedi, M. K. Bhat, and S. Bhalke, Optimization of SPDT package design for C-Band T/R Module, Internal Report # SSPL-188-TR-2005, Solid State Physics Laboratory, New Delhi, Dec. 2005.