Vol. 14
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-06-25
A Miniaturized Open-Loop Resonator Filter Constructed with Floating Plate Overlays
By
Progress In Electromagnetics Research C, Vol. 14, 131-145, 2010
Abstract
This work presents a new technique that uses floating plate overlays to realize the open-loop resonator bandpass filter with characteristics of compact size and having four controllable transmission zeros to achieve the multispurious suppression. Three floating plate overlays are used to cover parts of the open-loop resonator filter to increase the coupling between resonators and move the transmission zeros to desired frequencies to enhance harmonic suppression. A design procedure that developed based on an equivalent circuit model of such a new type of filter is proposed. Two experimental prototypes are designed and fabricated to verify the proposed design method. The measured results agree well with the simulations. The measured insertion losses of the prototypes in passband are all less than 2 dB. One prototype is designed to suppress third, fourth, and fifth harmonics with the suppression greater than 30 dBc. Another prototype can suppress second, third, and fourth order harmonics below 20 dBc. In addition, prototype circuit areas are only about 50 percent of the conventional open-loop filter.
Citation
Chih-Yin Hsiao, and Yi-Chyun Chiang, "A Miniaturized Open-Loop Resonator Filter Constructed with Floating Plate Overlays," Progress In Electromagnetics Research C, Vol. 14, 131-145, 2010.
doi:10.2528/PIERC10051405
References

1. Hong, J. S. and M. J. Lancaster, "Canonical microstrip filter using square open-loop resonators," IEE Electron. Let., Vol. 31, No. 23, 2020-2022, Nov., 1995.
doi:10.1049/el:19951370

2. Tsai, C. M., S. Y. Lee, and C. C. Tsai, "Performance of a planar filter using a 0゜ feed structure," IEEE Microwave Theory and Techniques, Vol. 50, No. 10, 2362-2367, Oct., 2002.
doi:10.1109/TMTT.2002.803421

3. Gu, J. Z., F. Zhang, C. Wang, Z. Zhang, M. Qi, and X. W. Sun, "Miniaturization and harmonic suppression open-loop resonator bandpass filter with capacitive terminations," IEEE Microwave Symposium Digest, 373-376, Jun., 2006.

4. Hong, J. S., "Dual-mode microstrip open-loop resonator and filters," IEEE Microwave Theory and Techniques, Vol. 55, No. 8, 1764-1770, Aug., 2007.
doi:10.1109/TMTT.2007.901592

5. Chin, K. S. and D. J. Chen, "Novel microstrip bandpass filters using direct-coupled triangular stepped-impedance resonators for spurious suppression," Progress In Electromagnetics Research Letters, Vol. 12, 11-20, 2009.
doi:10.2528/PIERL09090602

6. Chin, K. S. and C. K. Lung, "Miniaturized microstrip dual-band bandstop filters using tri-section stepped-impedance resonators," Progress In Electromagnetics Research C, Vol. 10, 37-48, 2009.
doi:10.2528/PIERC09080306

7. Chin, K. S., Y. C. Chiang, and J. T. Kuo, "Microstrip open-loop resonator with multispurious suppression," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 8, 574-576, Aug., 2007.
doi:10.1109/LMWC.2007.901763

8. Chiang, Y. C. and C. H. Hsieh, "Wideband microwave filter constructed by asymmetrical compact microstrip resonator and floating plate coupling structure," IET Electronics Letters, Vol. 43, No. 14, 762-763, Jul., 2007.

9. Pozar, D. M., Microwave Engineering, 3rd Ed., John Wiley & Sons, 2005.

10. Chen, C. F., T. Y. Huang, and R. B. Wu, "A miniaturized net-type microstrip bandpass filter using λ/8 resonators," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 7, 481-483, Jul., 2005.
doi:10.1109/LMWC.2005.851577