Vol. 13
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-05-26
A Method to Design Dual-Band, High-Directivity EBG Resonator Antennas Using Single-Resonant, Single-Layer Partially Reflective Surfaces
By
Progress In Electromagnetics Research C, Vol. 13, 245-257, 2010
Abstract
A new method is presented to design dual-band, high-directivity, EBG-resonator antennas using simple, single-resonant, single-layer partially reflective surfaces (PRS). The tailored abrupt reflection phase change of partially reflecting surfaces, observed only at the resonance frequency of the PRS resonant inclusions (such as dipoles and slots), is exploited for this purpose. An example single-resonant PRS, based on a frequency-selective surface (FSS) composed of a printed slot array, was designed. Then it is used to design an EBG-resonator antenna to demonstrate the feasibility of achieving dual-band performance. Cavity models are employed, together with the reflection characteristics of the PRS, to understand the operation of the device at critical frequencies such as cavity resonance frequencies and the PRS resonance frequency. Antenna simulations and computed results confirm the dual-band operation of this very simple, singlelayer, low-profile EBG-resonator antenna. It resonates in two bands centered at 10.5 GHz and 12.3 GHz. The peak directivity in each band is 18.2 dBi and 20.5 dBi, and the 3dB directivity bandwidth of each band is 7.5% and 8.7%, respectively.
Citation
Yuehe Ge, Karu P. Esselle, and Trevor S. Bird, "A Method to Design Dual-Band, High-Directivity EBG Resonator Antennas Using Single-Resonant, Single-Layer Partially Reflective Surfaces," Progress In Electromagnetics Research C, Vol. 13, 245-257, 2010.
doi:10.2528/PIERC10020901
References

1. Thevenot, M., C. Cheype, A. Reineix, and B. Jecko, "Directive photonic-bandgap antennas," IEEE Trans. Microwave Techniques and Theory, Vol. 47, No. 11, 2115-2122, Nov. 1999.
doi:10.1109/22.798007

2. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimized partially reflective surfaces," IEE Proc. Microwaves Antennas Propagat., Vol. 148, No. 6, 345-350, Dec. 2001.
doi:10.1049/ip-map:20010828

3. Weily, A. R., K. P. Esselle, B. C. Sanders, and T. S. Bird, "High gain 1D EBG resonator antenna," Microwave and Optical Technology Letters, Vol. 47, No. 2, 107-114, Oct. 20, 2005.
doi:10.1002/mop.21095

4. Weily, A. R., L. Horvath, K. P. Esselle, B. C. Sanders, and T. S. Bird, "A planar resonator antenna based on a woodpile EBG material," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 216-223, Jan. 2005.
doi:10.1109/TAP.2004.840531

5. Ge, Y., K. P. Esselle, and Y. Hao, "Design of low-profile high-gain EBG resonator antennas using a genetic algorithm," IEEE Antennas and Wireless Propagation Letters, No. 6, 480-483, USA, 2007.
doi:10.1109/LAWP.2007.907054

6. Lee, Y., J. Yeo, R. Mittra, and W. Park, "Application of electromagnetic bandgap (EBG) superstrates with controlable defects for a class of patch antennas with spatial angular filters," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 224-235, Jan. 2005.
doi:10.1109/TAP.2004.840521

7. Lee, D. H., Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, "Design of novel thin frequency selective surface superstrates for dual-band directivity enhancement," IET Microwaves, Antennas & Propagation, Vol. 1, No. 1, 248-254, 2007.
doi:10.1049/iet-map:20050318

8. Rodes, E., M. Diblanc, E. Arnaud, T. Monediµere, and B. Jecko, "Dual-band EBG resonator antenna using a single-layer FSS," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 368-371, 2007.
doi:10.1109/LAWP.2007.902808

9. Pirhadi, A., M. Hakkak, F. Keshmiri, and R. K. Baee, "Design of compact dual band high directive electromagnetic bandgap (EBG) resonator antenna using artificial magnetic conductor," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1682-1690, Jun. 2007.
doi:10.1109/TAP.2007.898598

10. Hajj, M., R. Chantalat, and B. Jecko, "Design of a dual-band sectional antenna for Hiperlan2 application using double layers of metallic electromagnetic band gap (M-EBG) materials as a superstrate ," International Journal of Antennas and Propagation, Vol. 2009, 2009.

11. Ge, Y., K P. Esselle, and T. S. Bird, "Designing a partially re°ective surface with increasing reflection phase for wideband EBG resonator antennas," IEEE Antennas and Propagation Society (AP-S) International Symposium, North Charleston, South Carolina, USA, Jun. 1-5, 2009.

12. Baccarelli, P., P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, "Effects of leaky-wave propagation in metamaterial grounded slabs excited by a dipole source," IEEE Trans. Microwave Techniques and Theory, Vol. 53, No. 1, 32-44, Jan. 2005.
doi:10.1109/TMTT.2004.839346