Vol. 13
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-04-26
On-Chip Fgcpw Lowpass and Bandpass Filters with Low Insertion Loss and High Stopband Rejection for V-Band Applications
By
Progress In Electromagnetics Research C, Vol. 13, 135-148, 2010
Abstract
This paper presents compact on-chip finite ground coplanar waveguide (FGCPW) lowpass filter (LPF) and bandpass filter (BPF) for V-band multi gigabit per second (Gbps) wireless personal area network (WPAN) applications. The equivalent lumped-element circuit of the proposed filters can be represented by an ABCD matrix which is obtained by consecutively multiplied ABCD matrixes of one T-network impedance and two shunt admittances. The full-wave EM simulators, AnsoftTM HFSS and AgilentTM Momentum, were used to fine tune the desired frequency response. The FGCPW LPF and BPF were implemented in WINTM semiconductor 0.15 μm pHEMT process. The obtained insertion losses are smaller than 0.5 dB and 1.5 dB with return losses of better than 20 dB and 13 dB, respectively. The 1-dB bandwidths of the LPF and BPF are 70 GHz (0-70 GHz) and 11 GHz (55-66 GHz), respectively. The stopband rejections are better than 20 dB from 95 to 120 GHz in the LPF, and from 0 to 42 GHz and 82 to 120 GHz in the BPF. The measured frequency responses show good agreements with the simulations. The chip size is very compact of 0.43×0.45 mm2.
Citation
Hwann-Kaeo Chiou, and I-Shan Chen, "On-Chip Fgcpw Lowpass and Bandpass Filters with Low Insertion Loss and High Stopband Rejection for V-Band Applications," Progress In Electromagnetics Research C, Vol. 13, 135-148, 2010.
doi:10.2528/PIERC10020801
References

1. Smulders, P., "Exploring the 60 GHz band for local wireless multimedia access: Prospects and future directions," IEEE Commun. Mag., Vol. 40, No. 1, 140-147, Jan. 2002.
doi:10.1109/35.978061

2. Wu, M.-S., Y.-Z. Chueh, J.-C. Yeh, and S.-G. Mao, "Synthesis of triple-band and quad-band bandpass filters using lumped-element coplanar waveguide resonators," Progress In Electromagnetics Research B, Vol. 13, 433-451, 2009.
doi:10.2528/PIERB09021302

3. Chen, M., Y.-C. Lin, and M.-H. Ho, "Quasi-lumped design of bandpass filter using combined cpw and microstrip," Progress In Electromagnetics Research Letters, Vol. 9, 59-66, 2009.
doi:10.2528/PIERL09042201

4. Ismail, A., M. S. Razalli, M. A. Mahdi, R. S. A. R. Abdullah, N. K. Noordin, and M. F. A. Rasid, "X-band trisection substrate-integrated waveguide quasi-elliptic filter," Progress In Electromagnetics Research, Vol. 88, 133-145, 2008.
doi:10.2528/PIER08081802

5. Zhang, J. and T. Y. Hsiang, "Dispersion characteristics of coplanar waveguides at subterahertz frequencies," Journal of Electromagnetic Waves and Application, Vol. 20, No. 10, 1411-1417, 2006.
doi:10.1163/156939306779276767

6. Wang, J.-P., B.-Z. Wang, and W. Shao, "A novel partly shielded finite ground CPW low pass filter," Journal of Electromagnetic Waves and Application, Vol. 19, No. 5, 689-696, 2005.
doi:10.1163/1569393053305053

7. Yang, B., E. Skafidas, and R. J. Evans, "Design of 60 GHz millimetre-wave bandpass filter on bulk CMOS," IET Trans. Microwaves, Antennas and Propagat., Vol. 3, No. 6, 943-949, Sep. 2009.
doi:10.1049/iet-map.2008.0222

8. Hsu, C.-Y., C.-Y. Chen, and H.-R. Chuang, "A 60-GHz millimeter-wave bandpass filter using 0.18-¹m CMOS technology," IEEE Electron Device Lett., Vol. 29, No. 3, 246-248, Mar. 2008.
doi:10.1109/LED.2007.915369

9. Lee, Y.-C., W.-I. Chang, and C.-S. Park, "Monolithic LTCC SiP transmitter for 60GHz wireless communication terminals," IEEE MTT-S Int. Microwave Symp. Dig., 1015-1018, Jun. 2005.

10. Lee, M.-G., T.-S. Yun, K.-B. Kim, D.-H. Shin, T.-J. Baet, and J.-C. Lee, "Design of millimeter-wave bandpass filters with λg/4 short stubs using GaAs surface micromachining," European Int. Microwave Conf. Dig., Vol. 2, Oct. 4-6, 2005.

11. Ali, W. K. W. and S. H. AI-Charchafchi, "Using equivalent dielectric constant to simplify the analysis of patch microstrip antenna with multi layer substrates," Proc. IEEE AP-S Int. Symp., Vol. 2, 676-679, Jun. 1998.

12. Hettak, K., N. Dib, A. F. Sheta, and S. Toutain, "A class of novel uniplanar series resonators and their implementation in original applications," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 9, 1270-1276, Sep. 1998.
doi:10.1109/22.709469

13. Hettak, K., N. Dib, A. Omar, G. Y. Delisle, M. Stubbs, and S. Toutain, "A useful new class of miniature CPW shunt stubs and its impact on millimeter-wave integrated circuits ," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 12, 2340-2349, Dec. 1999.
doi:10.1109/22.808980

14. Simons, R. N., Coplanar Waveguide Circuits Components and Systems , Wiley-Interscience, 2001.

15. Godshalk, E. M., "Generation and observation of surface waves on dielectric slabs and coplanar structures," IEEE MTT-S Int. Microwave Symp. Dig., 923-926, 1993.

16. Tsuji, M., H. Shigesawa, and A. A. Oliner, "New surface-wave-like mode on CPWs of infinite width and its role in explaining the leakage cancellation effect," IEEE MTT-S Int. Microwave Symp. Dig., 495-498, 1992.