Vol. 12
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-04-04
Improvement in Data Transmission Efficiency in Communication Systems Using Scattering Compensation Techniques
By
Progress In Electromagnetics Research C, Vol. 12, 237-251, 2010
Abstract
The primary requirement for maximum power transfer and minimum power loss is matched impedance in a transmission system. However, static design variations in system such as parasitics and dynamic variations such as changes in transmission frequency will result in reflections. A redesign or reconfiguration of complex systems is neither easy nor cost effective. A noble technique for compensating reflections in a communication system is presented here. The proposed methodology adapts the system to change without any modification to the system physical configuration. In this methodology compensation signals are added by I/O drivers with programmable phase delay and drive strength adjustments to cancel reflections. The concept application is demonstrated for a narrow bandwidth antenna system. An operating frequency off the antenna frequency results in a degraded received message eye. Using the proposed technique, without modifying the antenna, reflections were compensated and a significantly improved data eye was produced, as measured by the enhancement of critical performance parameters. The architecture of an expanded driver to implement the concept is outlined here. An algorithm and flow chart to dynamically identify and compensate for reflections are also presented.
Citation
Salauddin Raju, Shareeef M. Salahuddin, and Md Ishfaqur Raza, "Improvement in Data Transmission Efficiency in Communication Systems Using Scattering Compensation Techniques," Progress In Electromagnetics Research C, Vol. 12, 237-251, 2010.
doi:10.2528/PIERC09121608
References

1. Zerbe, J., et al. "Equalization and clock recover for a 2.5-10 GB/s 2-PAM/4-PAM backplane transceiver cell," IEEE Journal of Solid-state Circuits, Vol. 38, No. 12, 2121-2130, Dec. 2003.
doi:10.1109/JSSC.2003.818572

2. Papagiannakis, I., C. Xia, D. Klonidis, W. Rosenkranz, A. N. Birbas, and I. Tomkos, "Electronic distortion equalisation by using decision-feedback/feed-forward equaliser for transient and adiabatic chirped directly modulated lasers at 2.5 and 10 GB/s," IET Optoelectronics, Vol. 3, 18-29, Feb. 2009.
doi:10.1049/iet-opt:20070077

3. Sewter, J. and A. C. Carusone, "A 3-Tap FIR filter with cascaded distributed tap amplifiers for equalization up to 40 GB/s in 0.18-μm CMOS," IEEE Journal of Solid-state Circuits, Vol. 41, 1919-1929, Aug. 2006.
doi:10.1109/JSSC.2006.875293

4. Pozar, D. M., Microwave Engineering, 3rd Ed., John Wiley & Sons, Inc. Publication, 2005.

5. Collin, R. E., "Foundations for Microwave Engineering," IEEE Press Series on Electromagnetic Wave Theory, 2001.

6. Khalaj-Amirhosseini, M., "Wideband or multiband complex impedance matching using microstrip nonuniform transmission lines," Progress In Electromagnetics Research, Vol. 66, 15-25, 2006.

7. Rao, Q., T. A. Denidni, A. R. Sebak, and R. H. Johnston, "On improving impedance matching of a CPW FED low permittivity dielectric resonator antenna," Progress In Electromagnetics Research, Vol. 53, 21-29, 2005.
doi:10.2528/PIER04062901

8. Khalaj-Amirhosseini, M., "Wideband differential phase shifter using microstrip nonuniform transmission lines," Progress In Electromagnetics Research Letters, Vol. 3, 151-160, 2008.
doi:10.2528/PIERL08031603

9. Neshat, M., A. Heidari, D. Saeedkia, and S. Safavi-Naeini, "Echo cancellation in pulsed terahertz integrated circuits," 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 2008, Sep. 1-2, 2008.

10. Staubli, P. and P. Heinzmann, "Bidirectional 2 Mbit/s transmission over a single fibre using electrical echo cancellation," Electronics Letters, Vol. 22, 534-535, May 1986.
doi:10.1049/el:19860364

11. Raju, S., S. M. Salahuddin, and I. Raza, "Reflection cancellation from high speed transmission line," PIERS Proceedings, 731-735, Beijing China, Mar. 23-27, 2009.

12. Sethares, W. A., R. A. Kennedy, and Z. Gu, "An approach to blind equalization of non-minimum phase systems," International Conference on Acoustics, Speech, and Signal Processing, 1991, Vol. 3, 1529-1532, Apr. 1991.