Vol. 11
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2009-11-13
Effects of Microwave on Water and Its Influence on Drug Dissolution
By
Progress In Electromagnetics Research C, Vol. 11, 121-136, 2009
Abstract
Use of water with different molecular mobilities could affect drug dissolution of a dosage form and such profile of water might be modifiable using microwave. This study investigated the effects of microwave on water and its influences on dissolution of free drugs and drugs in calcium-crosslinked alginate beads using sulphanilamide and sulphamerazine as hydrophilic and hydrophobic model drugs respectively. The water was treated by microwave at 300 W or without pre-treatment. The drug dissolution, pH and molecule mobility profiles of untreated and microwave-treated water were examined. Microwave-treated water had higher pH and water molecule mobility. The latter was characterized by higher conductivity, lower molecular interaction and crystallinity profiles. The dissolution of hydrophilic and hydrophobic free or encapsulated drugs was enhanced using microwave-treated water due to its higher molecular mobility. The untreated water of the same pH as microwave-treated water did not enhance drug dissolution. The drug dissolution from beads was increased by higher water uptake leading to matrix erosion and pore formation using microwave-treated water and was not promoted by the formation of non-crosslinked hydrated alginic acid matrix in untreated water of lower pH. Microwave treatment of water increased water molecule mobility and can promote drug dissolution.
Citation
Tin Wui Wong, Azzakirah Iskhandar, Mardhiyah Kamal, Siti Juwahir Jumi, Nur Hazirah Kamarudin, Nur Zahirah Mohamad Zin, and Nurul Hidayah Mohd Salleh, "Effects of Microwave on Water and Its Influence on Drug Dissolution," Progress In Electromagnetics Research C, Vol. 11, 121-136, 2009.
doi:10.2528/PIERC09092105
References

1. Ku, H. S.-L. and T. Yusaf, "Processing of composites using variable and fixed frequency microwave facilities," Progress In Electromagnetics Research B, Vol. 5, 185-205, 2008.
doi:10.2528/PIERB08011304

2. Wong, T.-W., A.-W. Selasiah, and Y. Anthony, "Effects of microwave on drug release property of poly (methyl vinyl ether-co-maleic acid) matrix," Drug Dev. Ind. Pharm., Vol. 33, 737-746, 2007.
doi:10.1080/03639040601015513

3. Wong, T.-W., A.-W. Selasiah, and Y. Anthony, "Drug release responses of zinc ion crosslinked poly(methyl vinyl ether-co-maleic acid) matrix towards microwave," Int. J. Pharm., Vol. 357, 154-163, 2008.
doi:10.1016/j.ijpharm.2008.01.047

4. Wong, T.-W., "Use of microwave in processing of drug delivery systems," Curr. Drug Deliv., Vol. 5, No. 2, 77-84, 2008.
doi:10.2174/156720108783954842

5. Wong, T.-W. and N. Sumiran, "Drug release property of chitosan-pectinate beads and its changes under the influence of microwave," Eur. J. Pharm. Biopharm., Vol. 69, 176-188, 2008.
doi:10.1016/j.ejpb.2007.09.015

6. Vandelli, M.-A., Vandelli, M.-A., M. Romagnoli, A. Monti, M. Gozzi, P. Guerra, F. Rivasi, and F. Forni, "Microwave-treated gelatin microspheres as drug delivery system," J. Controlled Release, Vol. 96, 67-84, 2004.
doi:10.1016/j.jconrel.2004.01.009

7. Yannas, I.-V. and A.-V. Tobolsky, "Crosslinking of gelatine by dehydration," Nature, Vol. 215, 509-510, 1967.
doi:10.1038/215509b0

8. Welz, M.-M. and C.-M. Ofiner III, "Examination of self-crosslinked gelatin as a hydrogel for controlled-release," J. Pharm. Sci., Vol. 81, 85-90, 1992.
doi:10.1002/jps.2600810117

9. Lee, C.-C., C.-L.-C. Ong, P.-W.-S. Heng, L.-W. Chan, and T.-W. Wong, "Interactive mixture as rapid drug delivery system," Drug Dev. Ind. Pharm., Vol. 34, 206-214, 2008.
doi:10.1080/03639040701542291

10. Kerc, J., S. Srcic, and B. Koer, "Alternative solvent-free preparation methods for felodipine surface solid dispersions," Drug Dev. Ind. Pharm., Vol. 24, No. 4, 359-363, 1998.
doi:10.3109/03639049809085631

11. Bergese, P., I. Colombo, D. Gervasoni, and L.-E. Depero, "Microwave generated nanocomposites for making insoluble drugs soluble," Mater. Sci. Eng. C, Vol. 23, 791-795, 2003.
doi:10.1016/j.msec.2003.09.137

12. Moneghini, M., B. Bellich, P. Baxa, and F. Princivalle, "Microwave generated solid dispersions containing ibuprofen," Int. J. Pharm., Vol. 361, 125-130, 2008.
doi:10.1016/j.ijpharm.2008.05.026

13. Aulton, M., "Dissolution and solubility," Pharmaceutics: The Science of Dosage Form Design, 2nd edition, M. E. Aulton (ed.), 15--32, Churchill Livingstone, London, 2002.

14. Aulton, M., "Properties of solutions," Pharmaceutics: The Science of Dosage Form Design, 2nd edition, M. E. Aulton (ed.), 33--40, Churchill Livingstone, London, 2002.

15. Pan, X., H. Liu, Z. An, J. Wang, and G. Niu, "Microwave enhanced dehydration and solvent washing purification of penicillin G sulfoxide," Int. J. Pharm., Vol. 220, 33-41, 2001.
doi:10.1016/S0378-5173(01)00647-0

16. Chaplin, M.-F., "A proposal for the structuring of water," Biophys. Chem., Vol. 83, 211-221, 1999.

17. Wong, T.-W., H.-Y. Lee, L.-W. Chan, and P.-W.-S. Heng, "Release characteristics of pectinate microspheres prepared by an emulsification technique," J. Microencapsulation, Vol. 19, No. 4, 511-522, 2002.
doi:10.1080/02652040210140481

18. Fesenko, E.-E., V.-I. Geletyuk, V.-N. Kazachenko, and N.-K. Chemeris, "Preliminary microwave irradiation of water solutions changes their channel-modifying activity," FEBS Letters, Vol. 366, 49-52, 1995.
doi:10.1016/0014-5793(95)98629-W

19. Haug, A., Composition and properties of alginates, Thesis, Norweigian Institute of Technology, Trondheim, 1964.

20. Tu, J., S. Bolla, J. Barr, J. Miedema, X. Li, and B. Jasti, "Alginate microparticles prepared by spray-coagulation method: Preparation, drug loading and release characterization," Int. J. Pharm., Vol. 303, 171-181, 2005.
doi:10.1016/j.ijpharm.2005.07.008

21. Pongjanyakul, T. and S. Puttipipatkhachorn, "Modulating drug release and matrix erosion of alginate matrix capsules by microenvironmental interaction with calcium ion," Eur. J. Pharm. Biopharm., Vol. 67, 187-195, 2007.
doi:10.1016/j.ejpb.2006.12.009

22. Velings, N.-M. and M.-M. Mestdagh, "Physico-chemical properties of alginate gel beads," Polym. Gels Networks, Vol. 3, 311-330, 1995.
doi:10.1016/0966-7822(94)00043-7