Vol. 12
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-02-08
Modified W-Type Single-Mode Optical Fiber Design with Ultra-Low, Flattened Chromatic Dispersion and Ultra-High Effective Area for High Bit Rate Long Haul Communications
By
Progress In Electromagnetics Research C, Vol. 12, 79-92, 2010
Abstract
A proposal for the new modified W type optical fiber structure with ultra high effective area and small dispersion as well as dispersion slope is presented. For the proposed structure, all these features are achieved due to placing extra depressed cladding layers, which is the key to achieve higher effective area and flat dispersion curve compared with the conventional W structures. Meanwhile, the suggested design method is based on the Genetic Algorithm optimization technique to choose optimal value for the structural parameters. Also, our calculation for extracting optical properties of the proposed structure is evaluated analytically. The designed dispersion flattened single mode fiber has dispersion and its slope respectively within [0.1741-0.9282] ps/km/nm and [(-0.011)-(0.0035)] ps/km/nm2 in the spectral range of [1.46-1.625] μm (S+C+L bands) which are noticeably smaller than the reported value for ultra-low dispersion slope fibers [5]. The designed fiber has ultrahigh effective area from 103.56 to 232.26 μm2 in the above wavelength interval. Meanwhile, we show that there is a breakthrough in the quality factor of the ultra-low, ultra-flattened chromatic dispersion single mode optical fiber.
Citation
Ali Rostami, and Somayeh Makouei, "Modified W-Type Single-Mode Optical Fiber Design with Ultra-Low, Flattened Chromatic Dispersion and Ultra-High Effective Area for High Bit Rate Long Haul Communications," Progress In Electromagnetics Research C, Vol. 12, 79-92, 2010.
doi:10.2528/PIERC09090603
References

1. Hatayama, H., T. Kato, M. Onishi, E. Saasoka, and M. Nishimura, "Dispersion flattened fiber with effective core area more than 50 μm2," Proc. of OFC'98, ThK4, 304, 1998.

2. Agrawal, G. P., Nonlinear Fiber-optics, 3rd Ed., University of New York, Rochester, 2001.

3. Zhang, X. and X. Tian, "Analysis of waveguide dispersion characteristics of WI- and WII-type triple-clad single-mode fibers," Optics & Laser Technology, Vol. 35, 237-244, 2003.
doi:10.1016/S0030-3992(02)00175-5

4. Zhang, X. and X. Wang, "The study of chromatic dispersion and chromatic dispersion slope of WI- and WII-type triple-clad single-mode fibers," Optics & Laser Technology, Vol. 37, 167-172, 2005.
doi:10.1016/j.optlastec.2004.03.006

5. Zhang, X., L. Xie, X. Tian, and S. Hou, "Chirped Gaussian pulse broadening induced by chromatic dispersion in the triple-clad single-mode fiber with a depressed index inner cladding," Optical Fiber Technology, Vol. 10, 215-231, 2004.
doi:10.1016/j.yofte.2003.11.001

6. Lundin, R., "Dispersion flattening in W fiber," Applied Optics, Vol. 33, 1011-1014, 1994.

7. Jie, L., Q. Qinan, and Y. Peida, "The relation between the dispersion characteristic of W-profile broad band dispersion compensation fiber and its structural parameters," Optics Communication, Vol. 21, 90-90, 2000.

8. Varshney, R. K., A. K. Ghatak, I. C. Goyal, and S. Antony C, "Design of a flat field fiber with very small dispersion slope," Optical Fiber Technology, Vol. 9, 189-198, 2003.
doi:10.1016/S1068-5200(03)00042-7

9. Kumano, N., K. Mukasa, M. Sakano, H. Moridaira, T. Yagi, and K. Kokura, "Novel NZ-DSF with ultra low dispersion slope lower than 0.02 ps/km/nm2," Proceeding of ECOC. PDA, 1-5, 2001.

10. Hussey, L., "Triple-clad single-mode fibers for dispersion flattening," Optics Engineering, Vol. 33, 3999-4005, 1994.
doi:10.1117/12.184374

11. Tian, X. and X. Zhang, "Dispersion-flattened designs of the large effective area single-mode fibers with ring index profiles," Optics Communication, Vol. 230, 105-113, 2004.
doi:10.1016/j.optcom.2003.11.037

12. Rostami, A. and M. Savadi, "Investigation of dispersion characteristic in MI- and MII-type single mode optical fibers," Optics Communication, Vol. 271, 413-420, 2007.
doi:10.1016/j.optcom.2006.10.072

13. Oskoui, M. S., S. Makouei, A. Rostami, and Z. D. K. Kanani, "Proposal for optical fiber designs with ultrahigh effective area and small bending loss applicable to long haul communications," Applied Optics, Vol. 46, 6330-6339, 2007.
doi:10.1364/AO.46.006330

14. Spears, W. M, K. A. De Jong, T. Baeck, and P. Bradzil, "An overview of evolutionary computation," Proceedings of European Conference on Machine Learning, Vol. 667, 442-459, Springer-Verlag, Berlin, 1993.

15. Hautakorpi, M. and M. Kaivola, "Modal analysis of M-type-dielectric-profile optical fibers in the weakly guiding approximation," J. Opt. Soc. Am. A, Vol. 22, 1163-1169, 2005.
doi:10.1364/JOSAA.22.001163

16. Gloge, D., "Weakly guiding fibers," Applied Optics, Vol. 10, No. 10, 2252-2258, 1971.
doi:10.1109/JQE.1982.1071586

17. Monerie, M., "Propagation in doubly clad single-mode fibers," IEEE Journal of Quantum Electronics, Vol. 18, No. 4, 535-542, 1982.
doi:10.1364/AO.35.000388

18. Nunes, F. D., C. A. D. S. Melo, and H. F. D. S. Filho, "Theoretical study of coaxial fibers," Applied Optics, Vol. 35, No. 3, 388-399, 1996.

19. Snyder, A. W. and J. D. Love, Optical Waveguide Theory, Chappman and Hall, 1983.

20. Kawano, K. and T. Kitoh, Introduction to Optical Waveguide Analysis, John Wiley & Sons, Inc., 2001.
doi:10.1364/AO.37.003190

21. Hattori, H. T. and A. Safaai-Jazi, "Fiber designs with significantly reduced nonlinearity for very long distance transmission," Applied Optics, Vol. 37, 3190-3197, 1998.