Vol. 8
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2009-06-08
A Simple Four-Order Cross-Coupled Filter with Three Transmission Zeros
By
Progress In Electromagnetics Research C, Vol. 8, 57-68, 2009
Abstract
Generalized cross-coupled filters require implementation of both positive and negative cross-coupled elements. A positive element frequently uses inductive coupling, while a negative one uses capacitive coupling. Traditional methods for realizing capacitive couplings, which are difficult to adjust in practice, have included the use of capacitive probes in coaxial cavity. And this kind of n-order cross-coupled filters without the coupling between input and output ports can only produce 2-n transmission zeros at most. In this paper, we present a convenient method for capacitive coupling. Based on the method a four-order cross-coupled filter is realized, and the measured results match well with the theoretical prediction. Especially, there are three transmission zeros near the pass band.
Citation
Jin-Song Zhan, and Jia-Li Wang, "A Simple Four-Order Cross-Coupled Filter with Three Transmission Zeros," Progress In Electromagnetics Research C, Vol. 8, 57-68, 2009.
doi:10.2528/PIERC09041107
References

1. Atia, A. E. and A. E. Williams, "Narrow bandpass waveguide filters," IEEE Trans. Microw. Theory Tech., Vol. 20, No. 4, 258-265, Apr. 1972.
doi:10.1109/TMTT.1972.1127732

2. Levy, R., "Filters with single transmission zeros atreal and imaginary frequencies," IEEE Trans. Microw. Theory Tech., Vol. 24, No. 4, 172-181, Apr. 1976.
doi:10.1109/TMTT.1976.1128811

3. Hongand, J.-S. and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Trans. Microw. Theory Tech., Vol. 24, No. 12, 2099-2109, Dec. 1976.

4. Shen, T., H.-T. Hsu, K. A. Zaki, A. E. Atia, and T. G. Dolan, "Full-wave design of canonical waveguide filters by optimization," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 2, 504-510, Feb. 2003.
doi:10.1109/TMTT.2002.807829

5. Ruiz-Cruz, J. A., M. A. E. Sabbagh, K. A. Zaki, J. M. Rebollar, and Y. Zhang, "Canonical ridge waveguide filters in LTCC or metallic resonators," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 174-182, Jan. 2005.
doi:10.1109/TMTT.2004.839324

6. Yao, H. W., K. A. Zaki, A. E. Atia, and R. Hershtig, "Full wave modeling of conducting posts in rectangular waveguides and its applications to slot coupled combline filters," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 12, 2824-2829, Dec. 1995.
doi:10.1109/22.475641

7. Wang, C. and K. A. Zaki, "Full wave modeling of electric coupling probes comb-line resonators and filters," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 12, 2459-2464, Dec. 1995.
doi:10.1109/22.898998

8. Pozer, D. M., Microwave Engineering, 3rd Ed., 51-53, 2004.

9. Hong, J.-S. and M. J. Lancaster, "Microstrip Filter for RF/Microwave Applications," Wiley, 2001.

10. Zysman, G. I. and A. K. Johnson, "Coupled transmission line networks in an inhomogeneous dielectric medium," IEEE Trans. Microw. Theory Tech., Vol. 17, 753-759, Oct. 1969.
doi:10.1109/TMTT.1969.1127055

11. Rhodes, J. D., Theory of Electric Filters, Wiley, 1976.

12. Wenzel, R. J., "Solving the approximation problem for narrowband bandpass ¯lters with equal-ripple passband response and arbitrary phase response," 1975 IEEE MTT-S Int. Microwave Symp. Dig., 50, 1975.