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Abstract—Generalized cross-coupled filters require implementation of
both positive and negative cross-coupled elements. A positive element
frequently uses inductive coupling, while a negative one uses capacitive
coupling. Traditional methods for realizing capacitive couplings which
are difficult to adjust in practice have included the use of capacitive
probes in coaxial cavity. And this kind of n-order cross-coupled filters
without the coupling between input and output ports can only produce
n−2 transmission zeros at most. In this paper, we present a convenient
method for capacitive coupling. Based on the method a four-order
cross-coupled filter is realized, and the measured results match well
with the theoretical prediction. Especially, there are three transmission
zeros near the pass band.

1. INTRODUCTION

Quasi-elliptic filters with finite frequency transmission zeros are now
finding ever-increasing applications in wide range of wireless and
mobile communication systems due to their high performance and
compact size. These filters provide multiple coupling paths through
which a signal may pass, so that a signal cancellation can take place
at given finite frequencies for enhancing a skirt selectivity, or at given
imaginary frequencies for achieving a flat group delay, or even both
simultaneously, depending on the phase and magnitude conditions of
signals [1, 2].

It is well known that both positive and negative coupling are
needed to generate transmission zeros at finite frequencies in a cross-
coupled filter [3]. Positive coupling can be obtained conveniently by
a magnetic coupling structure, e.g., it can be realized by a square
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aperture between the waveguide cavity narrow walls. However, in
many cases, it is difficult to produce a negative coupling. Usually,
in a canonical folded waveguide filter, a square aperture between the
top and bottom cavities can be used to generate the required negative
coupling [4, 5]. In coaxial cavity filters, in order to obtain the negative
coupling, the electric length of metal rod in coaxial cavity has to be
greater than π/4, and the capacitive probe is necessary. All of them
would make the structure more complex, and it is so hard to machine
for achieving a nonadjacent electric coupling coefficient [6, 7]. In this
paper, we present a simple structure for achieving negative coupling
without the capacitive probes in coaxial cavity.

The paper is organized as follows. In Section 2, derived from
coupled-line, the theoretical solutions of positive and negative coupling
in coaxial cavity are investigated. Synthesis, realization, and the
experiments of filter will be presented in Section 3. Here, we
manufacture a cross-coupled filter which the signal is fed by magnetic
coupling at input/output. Finally, conclusions are given in Section 4.

2. COUPLING ANALYSIS

The filters of coaxial cavity mainly use the quarter-wave resonators.
There are two important characteristics in these resonators. It is
obvious that at resonance of the fundamental mode, each of the
quarter-wave resonators has the maximum electric field density at the
open-end and the maximum magnetic field density at the opposite
side [8]. It follows that the electric coupling can be obtained if the
open-ends of two coupled resonators are proximately placed, and the
magnetic coupling can be obtained if the sides with the maximum
magnetic field are proximately placed. It seems easy to realize both
positive and negative coupling by adjusting the position and size of
the square aperture between two coaxial cavities. However, even if the
position of the square aperture between two coaxial cavities is near the
open sides, the coupling would be mostly magnetic coupling, because
the magnetic and electric coupling always exists at the same time.
Furthermore, the electric coupling is weaker than magnetic coupling in
case when the value of equivalent capacitance at the open end is large
enough. The capacitance would reduce the electric length of metal
rod in coaxial cavity and deposit the main electric field. To generate
electric coupling we should make use of another characteristic of the
quarter-wave resonator. We know that the electric coupling decays
faster than the magnetic coupling against the spacing [3]. On the
other hand, the electric coupling is dominant for the small coupling
spacing, whereas the magnetic coupling becomes dominant when the
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spacing is larger. Thereby if we make the spacing of metal rods closer,
the electric coupling would be stronger than magnetic coupling. Using
these two characteristics, it is very easy to obtain electric coupling
without capacitive probes and realize a cross-coupled filter.

We know that two quarter-wave resonators of coaxial cavity have
the same coupled characteristics as the quarter-wave resonators of the
coupled transmission lines. It is convenient to create circuit model and
analyze the phase and magnitude responses by the theory of coupled
transmission lines. According to the condition of square aperture
between resonators and the coupling modes at input/output ports,
there are four cases should be discussed as follows.

CASE A: If the size of the square aperture between quarter-wave
resonators of coaxial cavity is large enough, coupling was taken place
at the open-end and short-end of two coupled resonators. In addition,
the signal is fed by the electric coupling at input and output. As shown
in Figure 1, the M2CLIN is the model of two quarter-wave resonators
of coaxial cavity.

Figure 1. The model of CASE A.

Because the network is symmetrical, the network analysis will
be simplified by even- and odd-mode networks parameters [9]. For
simplicity, we assume that the coupled lines have the same phase
velocity for the even- and odd-modes, so the input even- and odd-
mode impedance can be given by

Zine = Z0e

ZL + jZ0etg πw
4w0

Z0e + jZLtg πw
4w0

+
1

jwc
(1)

Zino = Z0o

ZL + jZ0otg πw
4w0

Z0o + jZLtg πw
4w0

+
1

jwc
(2)

where the Z0e is the even-mode characteristic impedance and Z0o is the
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odd-mode characteristic impedance. The w0 is the resonance frequency
of one resonator. Because the 3rd and 4th ports are connected to
ground, the value of ZL should be 0. Referring to reflection coefficient,
we have the even- and odd- mode S parameters.

S11e =
Zine − Z0

Zine + Z0
=

jZ0etg πw
4w0

+ 1
jwc − Z0

jZ0etg πw
4w0

+ 1
jwc + Z0

(3)

S11o =
Zino − Z0

Zino + Z0
=

jZ0otg πw
4w0

+ 1
jwc − Z0

jZ0otg πw
4w0

+ 1
jwc + Z0

(4)

The S parameters of network is then given by [9]

S11 =
1
2
(S11e + S11o) (5)

S21 =
1
2
(S11e − S11o) (6)

Adjusting the Zoe, Zoo, we can get the coupling coefficient and
phase characteristic which we need (See Figure 2).
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Figure 2. The phase and magnitude of S21 in CASE A.

CASE B: If the square aperture between quarter-wave resonators
of coaxial cavity is small and near the open-end of the resonators, there
is no coupling between short-ends. In addition, the signal is fed by the
electric coupling at input and output. The circuit model is shown in
Figure 3. The resonators are made up of M2CLIN and MLSC.

Similarly, we have:

Zine = Z0e
ZL + jZ0etgθM2CLIN

Z0e + jZLtgθM2CLIN
+

1
jwc

(7)

Zino = Z0o
ZL + jZ0otgθM2CLIN

Z0o + jZLtgθM2CLIN
+

1
jwc

(8)
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Figure 3. The model of CASE B.
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Figure 4. The phase and magni-
tude of S21 in CASE B.
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Figure 5. The magnitude
relation of minor and main path.

Because of the MLSC connecting to the coupled line, ZL should
be jZ0tgθMLSC . Where θMLSC is the electric length of MLSC. In
addition, θM2CLIN is the electric length of M2CLIN. When resonating,
they satisfy:

θM2CLIN + θMLSC =
π

4
+ n

π

2
n = 1, 2, . . . (9)

Referring to the functions (3) to (6), we can get S parameters of
the network. The response is shown in Figure 4.

By comparing the phase responses in Figure 2 and Figure 4, we can
observe that both are out of phase near the resonant frequencies. The
simple structures of positive and negative coupling in coaxial cavity are
what we search for. From the magnitude of S21 in Figure 4, we find
out that there is one transmission zero locating at low frequency. In
fact, the magnetic and electric coupling all exist between resonators
in Figure 3. They would cancel each other [9] and then produce
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one transmission zero. The location of transmission zero is mainly
depended on two conditions. One is the ratio of θM2CLIN and θMLSC .
The other is the strength of the electric coupling at input/output ports.
These characteristics are very useful. For example, when we design a
four-order cross-coupled filter, the main coupled path can be made up
of the structure shown in Figure 1, and the minor coupled path can be
made up of the structure shown in Figure 2. Because one transmission
locates at low frequency in Figure 4, it would easily lead to four points
where the main and minor paths have the same magnitude of S21, as
shown in Figure 5.

We know that when the signal which passes through the main
coupled path has the same power and opposite phase as the one which
passes though the minor coupled path, a transmission zero would occur.
In Figure 5, according to the phase relation in Figure 2 and Figure 4,
the points A, B and D satisfy the conditions, and the point C is in
phase. It means that there are two transmission zeros at low stop
band and one at high stop band, resulting in higher selectivity than
normal cross-coupled filter on the side of low pass band.

CASE C: If the size of the square aperture between the quarter-
wave resonators of coaxial cavity is large enough, coupling would take
place at the open-end and short-end. In addition, the signal is fed by
the magnetic coupling at input and output. The circuit model is shown
in Figure 6.

Here, the W1 of M2CLIN and W2 of M4CLIN compose the metal
rod of one resonator. It is the same as the W2 of M2CLIN with W3 of
M4CLIN. The W1 and W4 of M4CLIN act as a magneto coupler.

Figure 6. The model of CASE C.
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In this case, it is better to analyze this model by the ABCD matrix
of coupled line. The ABCD matrix parameters for the coupled line may
be computed by [10]. The responses are shown in Figure 7.

CASE D: If the square aperture between quarter-wave resonators
of coaxial cavity is small and near the open-end of the resonators,
coupling would only take place at the open-ends. In addition, the
signal is fed by the magnetic coupling at input and output. The circuit
model is shown in Figure 8. Similarly, this model can be analyzed by
ABCD matrix of coupled line. The responses are shown in Figure 9.

By comparing the phase responses in Figure 7 and Figure 9, we can
observe that both are out of phase near the resonant frequencies, and
there is one transmission zero located at high frequency in Figure 9.
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Figure 7. The phase and magnitude of S21 in CASE C.

Figure 8. The model of CASE D.
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Figure 9. The phase and magnitude of S21 in CASE D.

The location of the transmission zero mainly depends on the coupled
part’s electric length of the resonators and the strength of the magnetic
coupling at input and output ports. It is similar to the case introduced
previously. We can use these two structures which are described in
CASE C and CASE D to conveniently implement a four-order cross-
coupled filter. The main coupled path is made up of the structure
shown in Figure 6, and the minor coupled path is made up of the
structure shown in Figure 8. Because of one transmission locates at
high frequency in Figure 9, it would easily lead to four points where
the main and minor paths have the same magnitude of S21, as shown
in Figure 10. In Figure 10, according to the phase relation in Figure 7
and Figure 9, the points A, B and C is out of phase, and the point
D is in phase. So there are two transmission zeros at high stop band
and only one at low stop band. That would result in higher selectivity
than the normal cross-coupled filter on the side of high pass band.

3. DESIGN EXAMPLES

To verify the theory, we design a four-order cross-coupled filter of
coaxial cavity without capacitive probes and manufacture this one. At
input/output ports, the signal is fed by the magnetic coupling. For our
demonstration, the filter is employed for a power amplification system
and designed to meet the following specifications:

Center frequency =1115 MHz
Bandwidth of pass band = 69MHz
Return loss in the pass band<−18 dB
Rejection> 35 dB for frequency< 1038.1MHz
Rejection> 43 dB for frequency> 1187.5MHz
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For simplicity, we can change the specification to the condition
that rejection is higher than 35 dB for frequency> 1187.5MHz and
synthesize it according to the synthesis method for normal cross-
coupled filter. Choosing the structure in Figure 8 as the minor path
to produce the 3rd transmission zeros, it would be easy to optimize
8 dB for frequency> 1187.5MHz. The normal synthesis method for
the cross-coupled filters has been presented by Rhodes [11], Atia et
al. [1], Wenzel [12], and Levy [2]. For this design, the normalized
coupling coefficient matrix and the normalized external quality factor
are:

m =




0 0.890 0 −0.12
0.890 0 0.738 0

0 0.738 0 0.890
−0.12 0 0.890 0




qei = qeo = 0.92

The coupling coefficient can then be extracted by using the
following relation [9]:

k =
f2
1 − f2

2

f2
1 + f2

2

(10)

where f1 and f2 stand for the high and low resonant frequencies
respectively, and k represents the coupling coefficient between two
coaxial cavity resonators. The external quality factor Qe is calculated
by [9]

Qe =
2f0

∆f3 dB
(11)

where f0 is the frequency at which S21 reaches its maximum value, and
∆f3 dB is the 3 dB bandwidth for which S21 is reduced by 3 dB from
its maximum value.

Based on those parameters, the filter generally has only two
transmission zeros at finite frequencies. The key point is the realization
of the normalized coupling coefficient whose value is −0.12. If we
get it by the capacitive probe, there would be only electric coupling
and only one transmission zero at high stop band. When we get the
coupling coefficient by the structure in Figure 8, there would be two
transmission zeros at high stop band and one at low stop band. It is
easy to achieve in practice. By adjusting the square aperture and the
distance between the metal rods of resonator, we can obtain a minor
path in which the normalized coupling coefficient is −0.12, and there
is one transmission zero in high frequency. According to the coupling
coefficient and external quality factor, we create the simulated model
and manufacture it. The finished product is shown in Figure 11. The
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filter is made of aluminum plating with silver. The simulated and
measured responses are given in Figure 12.

In Figure 12, there are two transmission zeros at high stop band
and only one at low stop band. It agrees with the case C and case D.

Additionally, for validating our theory, in full-wave electromag-
netic (EM) simulator, we have created another simulated model of
four-order cross-coupled filter in which the signal is fed by the electric
coupling at input/output ports. The simulated report is shown in Fig-
ure 13. We find that there are two transmission zeros at low stop band
and one at high stop band. It agrees with the case A and case B.
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Figure 10. The magnitude
relation of minor and main path.

Figure 11. Cross-coupled filter
without capacitive probes
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Figure 12. The responses
simulated for another filter.
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Figure 13. The responses
simulated for another filter.
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4. CONCLUSIONS

We have presented a simple electric coupling structure to realize the
cross-coupled filter in coaxial cavity and taken two examples to verify
our analysis. Obviously, the structure is convenient to machine but
bring in high performance of filters. Based on this method the designer
has higher degree of freedom to design and machine a cross-coupled
filter.
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