1. Shao, W. and B. Zhou, "UWB microwave imaging for breast tumor detection in inhomogeneous tissue," Proceedings of the 2005 IEEE Engineering in Medicine and Biology, 27th Annual Conference, 1496-1499, Shanghai, China, 2005.
doi:10.1109/IEMBS.2005.1616715
2. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection-experimental investigation of simple tumor models," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 3312-3319, 2005.
doi:10.1109/TMTT.2005.857330
3. Huynh, P. T., A. M. Jarolimek, and S. Daye, "The false-negative mammogram," Radiograph, Vol. 18, 1137-1154, 1998.
4. Huo, Y., R. Bansal, and Q. Zhu, "Breast tumor characterization via complex natural resonances," IEEE MTT-S International Microwave Symposium Digest, Vol. 18, 387-390, 2003.
5. Paulsen, K. D. and P. M. Meaney, "Nonactive antenna compensation for fixed-array microwave imaging — Part I: Model development," IEEE Transactions on Medical Imaging, Vol. 18, 496-507, 1999.
doi:10.1109/42.781015
6. Meaney, P. M., K. D. Paulsen, J. T. Chang, M. W. Fanning, and A. Hartov, "Nonactive antenna compensation for fixed-array microwave imaging — Part II: Imaging results," IEEE Transactions on Medical Imaging, Vol. 18, 508-518, 1999.
doi:10.1109/42.781016
7. Fear, E. C., S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, "Enhancing breast tumor detection with near-field imaging," IEEE Microwave Magazine, Vol. 3, 48-56, 2002.
doi:10.1109/6668.990683
8. Bond, E. J., X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beam forming for early detection of breast cancer," IEEE Trans. Antennas Propag., Vol. 51, 1690-1705, 2003.
doi:10.1109/TAP.2003.815446
9. Li, X., S. K. Davis, S. C. Hagness, D. W. Weide, and B. D. Veen, "Microwave imaging via space-time beam forming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Trans. Microwav. Theory Tech., Vol. 52, 1856-1865, 2004.
doi:10.1109/TMTT.2004.832686
10. Shannon, C., E. Fear, and M. Okoniewski, "Dielectric-filled slotline bowtie antenna for breast cancer detection," Electronics Letters, Vol. 41, 388-390, 2005.
doi:10.1049/el:20057336
11. Sha, L., E. R. Ward, and B. Story, "A review of dielectric properties of normal and malignant breast tissue," Proceedings IEEE SoutheastCon, 457-462, 2002.
12. Abbosh, A. M. and M. E. Bialkowski, "Design of UWB planar for microwave imaging systems," IEEE International Conference on Signal Processing and Communications (ICSPC 2007), 24-27, Dubai, United Arab Emirates, 2007.
13. Fear, E. C. and M. A. Stuchly, "Microwave detection of breast cancer," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, 1854-1863, 2000.
doi:10.1109/22.883862
14. Miyakawa, M., T. Ishida, and M. Wantanabe, "Imaging capability of an early stage breast tumor by CP-MCT," Proceedings of the 26th Annual International Conference of the IEEE EMBS, Vol. 1, 1427-1430, San Francisco, CA, USA, 2004.
15. Wang, M., S. Yang, S. Wu, and F. Luo, "A RBFNN approach for DoA estimation of ultra wideband antenna array," Neurocomputing, Vol. 71, 631-640, 2008.
doi:10.1016/j.neucom.2007.08.023
16. Klemm, M., I. Craddock, J. Leendertz, A. Preece, and R. Benjamin, "Experimental and clinical results of breast cancer detection using UWB microwave radar," Proceedings of IEEE Antennas and Propagation Society International Symposium, 1-4, 2008.
17. Lim, H. B., N. T. Nhung, E. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiplyand- sum image reconstruction algorithm," IEEE Transaction on Biomedical Engineering, Vol. 55, 1697-1704, 2008.
doi:10.1109/TBME.2008.919723
18. Bindu, G., A. Lonappan, V. Thomas, C. K. Ananadan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetic Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802
19. Fear, E. C., J. Still, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, 887-897, 2003.
doi:10.1109/TMTT.2003.808630
20. Davis, S. K., H. Tandradinata, S. C. Hagness, and B. D. Veen, "Ultrawideband microwave breast cancer detection: A detection-theoretic approach using the generalized likelihood ratio test ," IEEE Transactions on Biomedical Engineering, Vol. 52, 1237-1250, 2005.
doi:10.1109/TBME.2005.847528
21. Lazebnik, M., et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," IOP PUBLISHING, Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
22. CST MICROWAVE STUDIO, CST inc., 2008.
23. Bishop, C. M., Neural Networks for Pattern Recognition, Oxford University Press, 1997.
24. Zhang, Y. and L.Wu, "Weights optimization of neural network via improved BCO approach," Progress In Electromagnetic Research, Vol. 83, 185-198, 2008.
doi:10.2528/PIER08051403
25. Shiva Nagendra, S. M. and Mukesh Khare, "Artificial neural network approach for modeling nitrogen dioxide dispersion from vehicular exhaust emissions," Elsevier, Ecological Modeling, Vol. 190, 99-115, 2006.
doi:10.1016/j.ecolmodel.2005.01.062
26. Messer, K. and J. Kittler, "Choosing an optimal neural network size to aid a search through a large image database," Proceedings of the Ninth British Machine Vision Conference, BMVC 98, 1998.
27. Wang, L. and H. Quek, "Optimal size of a feedforward neural network: How much does it matter?," IEEE, Proceedings of the Joint International Conference on Autonomic and Autonomous Systems and International Conference on Networking and Services (ICAS/ICNS 2005), 2005.