Vol. 6
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2009-02-12
Design of Metamaterial Multilayer Structures as Frequency Selective Surfaces
By
Progress In Electromagnetics Research C, Vol. 6, 115-126, 2009
Abstract
The reflection and transmission coefficients of multilayer structures are computed by the Transmission Line Transfer Matrix Method (TLTMM) and it is shown that metamaterials (MTMs) act as frequency selective surfaces (FSSs). Several examples of multilayer structures are analyzed, which are composed of combination of common materials and MTMs with dispersion relations. Interesting and uncommon behaviors are observed for MTMs. Novel applications are treated by TLTMM and a matrix method.
Citation
Homayoon Oraizi, and Majid Afsahi, "Design of Metamaterial Multilayer Structures as Frequency Selective Surfaces," Progress In Electromagnetics Research C, Vol. 6, 115-126, 2009.
doi:10.2528/PIERC09010508
References

1. Mittra, R., C. H. Chan, and T. Cwik, "Techniques for analyzing frequency selective surfaces—A review," Proceedings of the IEEE, Vol. 76, No. 12, 1593-1615, 1988.
doi:10.1109/5.16352

2. Oraizi, H. and M. Afsahi, "Analysis of planar dielectric multilayers as FSS by transmission line transfer matrix method (TLTMM)," Progress In Electromagnetics Research, Vol. 74, 217-240, 2007.
doi:10.2528/PIER07042401

3. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. on Antennas and Propagat, Vol. 51, No. 10, 2558-2571, 2003.
doi:10.1109/TAP.2003.817553

4. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley Interscience, 2006.

5. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002.
doi:10.2528/PIER01082101

6. Qing, A. and C. K. Lee, "An improved model for full wave analysis of multilayered frequency selective surface with gridded square element," Progress In Electromagnetics Research, Vol. 30, 285-303, 2001.
doi:10.2528/PIER00041803

7. Cory, H. and C. Zach, "Wave propagation in metamaterial multilayered structures," Microwave Opt. Technol. Lett., Vol. 40, No. 6, 460-465, 2004.
doi:10.1002/mop.20005

8. Zhang, Y., T. M. Grzegorczyk, and J. A. Kong, "Propagation of electromagnetic waves in a slab with negative permittivity and negative permeability," Progress In Electromagnetics Research, Vol. 35, 271-286, 2001.

9. Oraizi, H. and M. Afsahi, "Determination of correct values for propagation constant, intrinsic impedance and refraction index of metamaterials," IEEE Applied Electromagnetic Conference, AEMC, 1-4, Kolkata, India, 2007.

10. Oraizi, H. and M. Afsahi, "Determination of correct values for propagation constant, intrinsic impedance and refraction index of metamaterials," IEEE Int. Conf. Applied Electromagnetic, Vol. 1, 1-4, India, 2007.

11. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

12. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. on Microwave Theory. Tech., Vol. 47, No. 18, 2075-2084, 1999.
doi:10.1109/22.798002

13. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

14. Cory, H., S. Shiran, and M. Heilper, "An iterative method for calculating the shielding effectiveness and light Transmittance of multilayered media," IEEE Trans. Electrogagnetic Compatibility, Vol. 35, No. 4, 451-456, 1993.
doi:10.1109/15.247859

15. Gerardin, J. and A. Lakhtakia, "Negative index of refraction and distributed Bragg reflectors," Microwave and Optical Technology Letters, Vol. 34, No. 6, 409-411, 2002.
doi:10.1002/mop.10478

16. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, Artech House, 1993.

17. Mosallaei, H. and Y. Rahmat-Samii, "RCS reduction of canonical targets using genetic algorithm synthesized RAM," IEEE Trans. on Antennas Propagat., Vol. 48, 1594-1606, 2000.
doi:10.1109/8.899676

18. Mackay, A. J., "The theory and design of provably optimal bandwidth radar absorbent materials (RAM) using dispersive structures and/or frequency selective surfaces (FSS)," ICEAA Int. Conf. Electromagnetics in Advanced Applications, 3-8, Torino, Italy, 2007.

19. Terracher, F., G. Berginc, T.-C. Optronique, and R. Guyancourt, "Thin electromagnetic absorber using frequency selective surfaces," IEEE Int. Conf. Antennas Propagat. Society, 846-849, Salt Lake, USA, 2000.

20. Besso, P., M. Bozzi, L. Perregrini, L. Salghetti Drioli, and W. Nickerson, "Deep space antenna for Rosetta mission: Design and testing of the S/X-band dichroic mirror," IEEE Trans. on Antennas and Propagat, Vol. 51, No. 3, 388-394, 2003.
doi:10.1109/TAP.2003.808528

21. Besso, P, M. Bozzi, M. Formaggi, S. Germani, and L. Perregrini, "S/X/Ka-band dichroic mirrors for deep-space antennas," IEEE Int. Symp. Antennas Propagat., Vol. 4, 372-375, 2005.

22. Bertoni, H., L.-H. Cheo, and T. Tamir, "Frequency-selective reflection and transmission by periodic dielectric layer," IEEE Transactions on Antennas Propagat., Vol. 37, No. 1, 78-83, 1989.
doi:10.1109/8.192167

23. Wu, T. K., Frequency Selective Surface and Grid Array, Wiley, 1995.

24. Wu, T. K., "Cassini frequency selective surface development," J. Electromagn. Waves Applicat., Vol. 8, No. 12, 1547-1561, 1994.

25. Romeu, J. and Y. Rahmat-Samii, "Fractal FSS: A novel dual-band frequency selective surface," IEEE Transactions on Antennas Propagat., Vol. 48, No. 7, 1097-1105, 2000.
doi:10.1109/8.876329