Vol. 5
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2008-10-16
Sharp Focus Area of Radially-Polarized Gaussian Beam Propagation through an Axicon
By
Progress In Electromagnetics Research C, Vol. 5, 35-43, 2008
Abstract
Based upon developed radial FDTD-method, used for solution of Maxwell equations in cylindrical coordinates and implemented in Matlab-7.0 environment, we simulated focusing of the annular Gaussian beam with radial polarization by conical microaxicon with numerical aperture 0.60. It is shown that the area of focal spot (defined as area where intensity exceeds half of its maximum) can be 0.096λ2, and focal spot diameter equals to 0.35λ.
Citation
Victor Kotlyar, A. A. Kovalev, and Sergey Stafeev, "Sharp Focus Area of Radially-Polarized Gaussian Beam Propagation through an Axicon," Progress In Electromagnetics Research C, Vol. 5, 35-43, 2008.
doi:10.2528/PIERC08091902
References

1. Dorn, R., S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett., Vol. 91, 233901, 2003.
doi:10.1103/PhysRevLett.91.233901

2. Stadler, J., C. Stanciu, C. Stupperich, and A. J. Meixner, "Tighter focusing with a parabolic mirror," Opt. Lett., Vol. 33, No. 7, 681-683, 2008.
doi:10.1364/OL.33.000681

3 . Davidson, N. and N. Bokor, "High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens," Opt. Lett., Vol. 29, No. 12, 1318-1320, 2004.
doi:10.1364/OL.29.001318

4. Prather, D. W. and S. Shi, "Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements," J. Opt. Soc. Am. A, Vol. 16, No. 5, 1131-1142, 1999.
doi:10.1364/JOSAA.16.001131

5. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas and Propagation, Vol. 14, 302-307, 1966.

6. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves ," Computational Physics, Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159

7. Taflove A. and K. R. Umashankar, "The finite-difference timedomain method for numerical modeling of electromagnetic wave interaction with arbitrary structures," Progress In Electromagnetics Research, Vol. 02, 287-373, 1990.

8. Chu, S. T. and S. K. Chandhuri, "Finite-difference timedomain method for optical waveguide analysis," Progress In Electromagnetics Research, Vol. 11, 255-300, 1995.

9. Kung, F. and H.-T. Chuah, "A finite-difference time-domain software for simulation of printed circuit board assembly," Progress In Electromagnetics Research, Vol. 50, 299-335, 2005.
doi:10.2528/PIER04071401

10. D'Orazio, A., V. De Palo, M. De Sairo, V. Petruzzelli, and F. Prudenzano, "Finite difference time domain modeling of light amplification in active photonic band gab," Progress In Electromagnetics Research, Vol. 39, 299-339, 2003.
doi:10.2528/PIER02112501

11. Zheng, G., A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, "A novel implementation of modified Maxwell's equations in the periodic finite-difference time-domain method ," Progress In Electromagnetics Research, Vol. 59, 85-100, 2006.
doi:10.2528/PIER05092601

12. Ghaffar, A. and Q. A. Naqvi, "Focusing of electromagnetic plane wave into uniaxial crystal by a three dimensional plano convex lens ," Progress In Electromagnetics Research, Vol. 83, 25-42, 2008.
doi:10.2528/PIER08041404

13. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-effficiency wide-bend multimodal square horns for discrete lenses," Progress In Electromagnetics Research, Vol. 83, 335-352, 2008.
doi:10.2528/PIER08061806

14. Boutayeb, H., A.-C. Tarot, and H. Mahdjoubi, "Focusing characteristics of a metallic cylindrical electromagnetic band gab structure with defects," Progress In Electromagnetics Research, Vol. 66, 89-103, 2006.
doi:10.2528/PIER06100504

15. Dou, W. B., Z. L. Sun, and X. Q. Tan, "Fields in the focal space of symmetrical hyperbolic focusing lens ," Progress In Electromagnetics Research, Vol. 20, 213-226, 1998.
doi:10.2528/PIER98021300

16. Matsushima, A., Y. Nakamura, and S. Tomino, "Application of integral equation method to metal-plate lens structures," Progress In Electromagnetics Research, Vol. 54, 245-262, 2005.
doi:10.2528/PIER05011401

17. Minin, I. V., O.V. Minin, Y. R. Triandaphilov, and V. V. Kotlyar, "Subwavelength diffractive photonic crystal lens," Progress In Electromagnetics Research B, Vol. 7, 257-264, 2008.
doi:10.2528/PIERB08041501

18. Srivastava, R., S. Srivastava, and S. P. Ojha, "Negative refraction by photonic crystal," Progress In Electromagnetics Research B , Vol. 2, 15-16, 2008.
doi:10.2528/PIERB08042302

19. Luan, P.-G. and K.-D. Chang, "Photonic-crystal lens computerusing negative refraction," PIERS Online, Vol. 3, No. 1, 91-95, 2007.
doi:10.2529/PIERS060905234755

20. Haxhe, S. and F. AbdelMalek, "Novel design of photonic crystal lens based on negative refractive index," PIERS Online, Vol. 4, No. 2, 296-300, 2008.
doi:10.2529/PIERS070903122445

21. Lu, Z.-Y., "Design method of the ring-focus antenna with a variable focal distance for forming an elliptical beam ," Progress In Electromagnetics Research Letters, Vol. 4, 73-80, 2008.
doi:10.2528/PIERL08051401

22. Sugiona, K., Y. Hanada, and K. Midorikawa, "3D microstructuring of glass by femtosecond laser direct writing and aoolication to biophotonic microchips ," Progress In Electromagnetics Research Letters, Vol. 1, 181-188, 2008.
doi:10.2528/PIERL07120609

23. Mohanty, S. K., K. S. Mohanty, and M. W. Berns, "Organization of microscale objects using a microfabricated optical fiber," Opt. Lett., Vol. 33, No. 18, 2155-2157, 2008.
doi:10.1364/OL.33.002155

24. Katchalov, A. P., "Gaussian beam for Maxwell equations on a manifold," Journal of Mathematical Sciences, Vol. 122, No. 5, 3485-3501, 2004.
doi:10.1023/B:JOTH.0000034028.65715.55

25. Kalosha, V. P. and I. Golub, "Toward the subdiffraction focusing limit of optical superresolution," Opt. Lett., Vol. 32, No. 2, 3540-3542, 2007.
doi:10.1364/OL.32.003540