Vol. 4
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2008-09-09
Study of Effect of Inhomogeneous Distribution of Cooperative Up-Conversion Coefficient on the Optical Amplification Process in Si-Nc and Er Doped Optical Fiber
By
Progress In Electromagnetics Research C, Vol. 4, 139-155, 2008
Abstract
Effects of different optical losses (auger recombination, cooperative up-conversion, excited state absorption (ESA) and Si- Nc induced loss) on amplification parameters including net gain and population inversion in Si-Nc Er doped fibber are studied. Optical loss due to up-conversion effect has critical role in the mentioned optical amplifiers. Simple modeling of this effect can be done by 2CupN22, where Cup and N2 are up-conversion coefficient and population of level 2 respectively. In traditional considered cases Cup are assumed to be constant, but in practical situation this is hard to be realized. In practice distribution of Er ions is inhomogeneous and especially the Gaussian. So, from our point of view the suitable model should consider position dependence up-conversion coefficient. In this paper we considered this subject and by simulation modeling tries to show effect of inhomogeneous distribution of up-conversion coefficient on optical net gain and population inversion. It is shown that life times of first and second excited states are decreased and so the population inversion is decreased too. Thus optical net gain near to center of the Gaussian distribution is deceased strongly. The observed gain lowering is suitable description of the reported experimental results. Also, it is observed that in high level Si-Nc density the obtained optical gain is decreased against traditional description which Cup is assumed to be constant. The core diameter is considered R = 10μm.
Citation
Ahmad SalmanOgli, and Ali Rostami, "Study of Effect of Inhomogeneous Distribution of Cooperative Up-Conversion Coefficient on the Optical Amplification Process in Si-Nc and Er Doped Optical Fiber," Progress In Electromagnetics Research C, Vol. 4, 139-155, 2008.
doi:10.2528/PIERC08071201
References

1. Kuntze, S. B., L. Pavel, and J. S. Aitchison, "Controlling a semiconductor optical amplifier using a state-space model," IEEE Journal of Quantum Electronics, Vol. 43, No. 2, February 2007.
doi:10.1109/JQE.2006.887176

2. Kim, J. H., Y. I. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, S. H. Kim, and D. Ha, Journal of the Korean Physical Society, Vol. 45, No. 5, 1158-1161, 2004.

3. Bergano, N. S., Opt. Photon., Vol. 11, 21, 2000.

4. Kik, P. G. and A. Polman, "Exiton-erbium interaction in Si nanocrystal-doped SiO2," Journal of Applied Physics, Vol. 88, No. 4, 1992-1998, 2000.
doi:10.1063/1.1305930

5. Jiang, C. and Q. Zeng, "Optimization of Er-doped waveguide amplifier," Optics and Laser Technology, Vol. 36, 167-171, 2004.
doi:10.1016/j.optlastec.2003.07.005

6. Daldosso, N., D. Navarro, M. Melchirro, L. Pavesi, F. Gourbilleau, M. Carrada, R. Rizk, C. Garcia, P, Pellegrino, B. Garrido, and L. Cognolato, "Absorption cross section and signal enhancement in Er-doped Si nanocluster rib-loaded waveguide," Applied Physics Letter, Vol. 86, 261100, 2005.

7. Timoshenko, V. Yu., D. M. Zhigunov, P. K. Kashkarov, O. A. Shaligina, S. A. Tetrukov, R. J. Zhang, M. Fujii, and S. Hayashi, "Photoluminescence properties of Er doped structure of silicon nanocrystal in silicon dioxide matrix," Journal of Non-Crystalline Solids, Vol. 352, 2006.

8. Daldosso, N., D. Navarro, M. Melchiorri, C. Gristina, P. Pellegrino, B.Garrido, C. Sada, G. Battaglin, F. Gourbilleau, R. Rizik, and L. Pavaesi, "Er coupled Si nanocluster waveguide," IEEE-Journal in Quantum Confinement, Vol. 12, No. 6, 1607-1617, November 2005.

9. Kenyon, A. J., W. H. Loh, C. J. Oton, and I. Ahmad, "An analysis of erbium excited state absorption in silicon-rich silica," Journal of Luminescence, Vol. 121, 193-198, 2006.
doi:10.1016/j.jlumin.2006.07.025

10. Kik, P. G. and A. Polman, "Gain limiting process in Er-doped si nanocrystal waveguide in SiO2," Journal of Applied Physics, Vol. 91, No. 1, 2002.
doi:10.1063/1.1418417

11. Chryssou, C. E., A. J. Kenyon, and C. W. Pitt, "Investigation of energy exchange between silicon nanocrystal and Er ions in silica," Material Science and Engineering B, Vol. 81, 2001.

12. Kik, P. G. and A. Polman, "Er-doped optical amplifiers on silicon," MRS Bulletin, Vol. 23, No. 4, 48, April 1998.

13. Snoke, E., P. G. Kik, and A. Polman, "Concentration quenching in erbium implanted alkali silicate glasses," Optical Material, Vol. 5, 159-167, 1996.

14. Lucarz, F., Silicon Nanocrystal in Er Doped Silica for optical Amplification, MScCreated by Dell Lattitude D820 Project College, August 2003.

15. Lucarz, F. and A. J. Kenyon, "Silicon nanocrystal in Er doped silica for optical amplification," London Communication Symposium, September 2003.

16. Pacifici, D., G. Franzo, F. Priolo, F. Lacona, and L. D. Negro, "Modeling and perspective of the Si nanocrystal Er interaction for optical amplifier," Physics Review B, Vol. 67, 45301-453013, 2003.
doi:10.1103/PhysRevB.67.245301

17. Kik, P. G. and A. Polman, "Toward an Er doped Si nanocrestal sensitized waveguide laser the thin line between gain and loss," F.O.M Institute, 2002.

18. Khalaj-Amirhosseini, M., "To analyze inhomogeneous planar layers by cascading thin linear layers," Progress In Electromagnetics Research B, Vol. 3, 95-104, 2008.
doi:10.2528/PIERB07120601

19. Daldosso, N., M. Melchioori, L. Pavesi, G. Pucker, F. Gourbilleau, S. Chausserie, A. Belarousi, X. Potier, and C. Dufour, "Optical loss and absorption cross section of silicon nanocrystals," Journal of Luminescence, Vol. 121, 344-348, 2006.
doi:10.1016/j.jlumin.2006.08.083

20. Chryssou, C. E., A. J. Kenyon, T. S. Lwayama, and C. W. Pitt, "Evidence of energy coupling between si nanocrystal and Er in ion-implanted silica thin films," Appl. Phys. Lett., October 1999.

21. Kik, P. G. and A. Polman, "Exciton-erbium energy transfer in Si nanocrystal-doped SiO2," Material Science and Engineering B, Vol. 81, 2001.

22. Woo Journal of the Korean Physical Society, Vol. 45, No. 5, 1158-1161, November 2004.

23. Prokopovich, D. V., "Analytical and numerical aspects of Bragg fiber design," Progress In Electromagnetics Research B, Vol. 6, 361-379, 2008.
doi:10.2528/PIERB08031221

24. Rostami, A. and S. Makouei, "Temperature dependence analysis of the chromatic dispersion in WII-type zero-dispersion shifted fiber (ZDSF)," Progress In Electromagnetics Research B, Vol. 7, 209-222, 2008.
doi:10.2528/PIERB08040203

25. Yang, T., S. Song, H. Dong, and R. Ba, "Waveguide structures for generation of Terahertz Rradiation by electro-optical process in GaAS and Zugep2 using 1.55 μm fiber laser pulses," Progress In Electromagnetics Research Letters, Vol. 2, 95-102, 2008.
doi:10.2528/PIERL07122806

26. Shwetanshumala J. of Electromagn. Waves and Appl., Vol. 20, No. 1, 65-77, 2006.