Vol. 3
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2008-05-12
Quantifying and Cancellation Memory Effect in High Power Amplifier for OFDM Systems
By
Progress In Electromagnetics Research C, Vol. 3, 183-194, 2008
Abstract
This paper is concerned with a new time-domain modeling topology for signals which is appliedto OFDM systems. This model is a more accurate based on Wiener approach. Also the memory effect will be shown using two-tone intermodulation distortion (IMD) measurement with different tone frequency spacing and power levels. Next adaptive predistorter to counterbalance the AM/AM andAM/PM nonlinear effects of the transmitter power amplifier is proposedb y Hammerstein approach. Finally we consider the effectiveness of proposedmetho don performance of OFDM signal as the wideband system by reduction of distortion. It is confirmed by computer simulation that proposedapproac h produces a faster convergence speed than the previous adaptive predistortion technique.
Citation
Haleh Karkhane, Ayaz Ghorbani, and Hamid Reza Amin Davar, "Quantifying and Cancellation Memory Effect in High Power Amplifier for OFDM Systems," Progress In Electromagnetics Research C, Vol. 3, 183-194, 2008.
doi:10.2528/PIERC08041201
References

1. Chen, Y.-L., C.-L. Ruan, and L. Peng, "A novel ultra-wideband bow-tie slot antenna in wireless communication systems," Progress In Electromagnetics Research Letters, Vol. 1, 101-108, 2008.
doi:10.2528/PIERL07112302

2. Soliman, M. S., T. Morimoto, and Z.-I. Kawasaki, "Threedimensional localization system for impulsive noise sources using ultra-wideband digital interferometer technique," Journal of Electromagnetic Waves and Applicantions, Vol. 20, No. 4, 515-530, 2006.
doi:10.1163/156939306776117027

3. Hua, J., L. Meng, and Z. Xu, "A new methodfor SNR and Dippler shift estimation in wireless propagations," Journal of Electromagnetic Waves and Applicantions, Vol. 21, No. 15, 2431-2441, 2007.
doi:10.1163/156939307783134317

4. Ghorbani, M. Sheikhan, "The effect of solidstate power amplifiers (SSPAs) nonlinearities on MPSK andM-QAM signal transmission," Sixth Int’l Conference on Digital Processing of Signals in Comm., 193-197, 1991.

5. Singh, G., "Analytical study of the interaction structure of vane-loaded gyro-traveling wave tube amplifier," Progress In Electromagnetics Research B, Vol. 4, 41-66, 2008.
doi:10.2528/PIERB08010402

6. Xu, Y. H., Y. Guo, L. Xia, and Y. Q. Wu, "An support vector regression basednonlinear modeling methodfor SIC mesfet," Progress In Electromagnetics Research Letters, Vol. 2, 103-114, 2008.
doi:10.2528/PIERL07122102

7. Vuong, T. and A. F. Guibord, "Modeling of nonlinear elements exhibiting frequency-dependent AM/AM and AM/PM transfer characteristics ," Can. Electr. Eng. J., Vol. 9, No. 3, 112-116, 1984.

8. Schetzen, M., "Nonlinear system modeling based on theWiener theory ," Proc. IEEE, Vol. 69, 1557-1573, Dec. 1981.
doi:10.1109/PROC.1981.12201

9. Bosch, W. and G. Gatti, "Measurement andsim ulation of memory effects in predistortion linearizers," IEEE Trans. Microwave Theory Tech., Vol. 37, 1885-1890, Dec. 1989.
doi:10.1109/22.44098

10. Poza, H. B., Z. A. Sarkozy, and H. L. Berger, "A wideband data link computer simulation model," Proc. IEEE Nat. Aerospace Electron. Conf., 71-78, 1975.

11. Makeeva, G. S., O. A. Golovanov, and M. Pardavi-Horva, "Mathematical modeling of nonlinear waves and oscillations in gyromagnetic structures by bifurcation theory methods," Journal of Electromagnetic Waves and Applicantions, Vol. 20, No. 11, 1503-1510, 2006.
doi:10.1163/156939306779274363

12. Guo, Y. and R. M. Xu, "Ultra-widebandp ower splitting/combining technique using zero-degree left-handed transmission lines," Journal of Electromagnetic Waves and Applicantions, Vol. 21, No. 8, 1109-1118, 2007.

13. Saleh, A. A. M., "Frequency-independent and frequencydependent nonlinear models of TWT amplifiers ," IEEE Trans. Commun., Vol. COM 29, 1715-1720, Nov. 1981.

14. Fakoukakis, F. E., S. G. Diamantis, A. P. Orfanides, and G. A. Kyriacou, "Development of an adaptive and a switched beam smart antenna system for wireless communications," Journal of Electromagnetic Waves and Applicantions, Vol. 20, No. 3, 399-408, 2006.
doi:10.1163/156939306775701722

15. Abuelma, M. T., "Frequency-dependent nonlinear quadrature model for TWT amplifiers," IEEE Trans. Commun., Vol. COM-32, 982-986, Aug. 1984.
doi:10.1109/TCOM.1984.1096153

16. Muha, M. S., C. J. Clark, A. A. Moulthrop, and C. P. Silva, "Validation of power amplifier nonlinear block models," IEEE MTT-S Int. Microwave Symp. Dig., 759-762, 1999.

17. Blum, R. and M. C. Jeruchim, "Modeling nonlinear amplifiers for communication simulations," IEEE Int. Commun. Conf., 1468-1472, Boston, MA, 1989.

18. Karam, G. and H. Sari, "A data predistortion technique with memory for QAM radio systems," IEEE Trans. Commun., Vol. 39, 336-344, Feb. 1991.
doi:10.1109/26.76471

19. Eun, C. S. and E. J. Powers, "A predistorter design for a memoryless nonlinearity preceded by a dynamic linear system," Proc. GLOBECOM, 152-156, 1995.

20. Mandeep, J., A. Lokesh, S. Hassan, M. n. Mahmud, and M. Ain, "Design of Cartesian feedback RF power amplifier for L-band frequency range," Progress In Electromagnetics Research B, Vol. 2, 207-222, 2008.
doi:10.2528/PIERB07111901

21. Greblicki, W., "Nonparametric identification of Wiener systems," IEEE Trans. Inform. Theory, Vol. 38, 1487-1493, 1992.
doi:10.1109/18.149500

22. Hagenblad "Aspects of the identification of Wiener models,", Ph.D. Thesis, Division of Automatic Control, Department of Electrical Engineering Linkopings Universitet, Sweden, 1999.

23. Mao, S. Y. and P . X. Lin, "A test of nonlinear autoregressive models," Proc. Int. Conf. Acoustics, Speech, and Signal Processing, 2276-2279, New York, 1988.

24. Kang, H. W., Y. C. Soo, and D. H. Youn, "On compensating nonlinear distortions of an OFDM system using an efficient adaptive predistorter," IEEE Transactions on Communications, Vol. 47, No. 4, 522-526, Apr. 1999.
doi:10.1109/26.764925