1. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651
2. McNamara, D. A., C. W. I. Pistorius, and J. A. G. Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction, 471-500, Artech House, Inc., 1990.
3. Luebbers, R. J., "Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss," IEEE Trans. Antennas Propagat., Vol. AP-32, No. 1, 70-76, 1984.
doi:10.1109/TAP.1984.1143189
4. Luebbers, R. J., "Propagation prediction for hilly terrain using GTD wedge diffraction," IEEE Trans. Antennas Propagat., Vol. AP-32, No. 9, 951-955, 1984.
doi:10.1109/TAP.1984.1143449
5. Luebbers, R. J., "A heuristic UTD slope diffraction coefficient for rough lossy wedges," IEEE Trans. Antennas Propagat., Vol. 2, 206-211, 1989.
doi:10.1109/8.18707
6. Afacan, E. and E. Yazgan, "Modeling of mountains as wedges in communications," International Symposium on “Communication Theory & Applications”, Proc., Warwick-Ingiltere, 1991.
7. Afacan, E. and E. Yazgan, "Elliptic cylinder modelling of obstacles for low altitude radar systems," Journal of Electromagnetic Waves and Applications, Vol. 13, 237-258, 1999.
doi:10.1163/156939399X00871
8. Kara, A. and E. Yazgan, "Modelling of shadowing loss due to huge non-polygonal structures in urban radio propagation," Progress In Electromagnetics Research B, Vol. 6, 123-134, 2008.
doi:10.2528/PIERB08031209