Vol. 3
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2008-04-14
Numerical Analysis of Combined Field Integral Equation Formulations for Electromagnetic Scattering by Dielectric and Composite Objects
By
Progress In Electromagnetics Research C, Vol. 3, 19-43, 2008
Abstract
Numerical analysis of a generalized form of the recently developed electric and magnetic current combined field integral equation (JM-CFIE) for electromagnetic scattering by homogeneous dielectric and composite objects is presented. This new formulation contains a similar coupling parameter α as CFIE contains in the case of perfectly conducting objects. Two alternative JM-CFIE(α) formulations are introduced and their numerical properties (solution accuracy and convergence of iterative Krylov subspace methods) are investigated. The properties of these formulations are found to be very sensitive to the choice of α and to the permittivity of the object. By using normalized fields and currents the optimal value of α minimizing the number of iterations becomes only weakly dependent on the permittivity object. Using linear-linear basis functions instead of the more conventional constant-linear (RWG) basis functions the solution accuracy can be made less dependent on the choice of α.
Citation
Pasi Yla-Oijala, "Numerical Analysis of Combined Field Integral Equation Formulations for Electromagnetic Scattering by Dielectric and Composite Objects," Progress In Electromagnetics Research C, Vol. 3, 19-43, 2008.
doi:10.2528/PIERC08032501
References

1. Kolundzija, B. M. and A. R. Djordjevic, Electromagnetic Modeling of Composite Metallic and Dielectric Structures, Artech House, 2002.

2. Mautz, J. R. and R. F. Harrington, "H-field, E-field and combined-field solutions for conducting bodies of revolution," Arch. Elektr. Ubertragung., Vol. 32, 157-164, 1978.

3. Mautz, J. R. and R. F. Harrington, "Electromagnetic scattering from a homogeneous material body of revolution," Arch. Elektron. Ubertragungstechn. (Electron. Commun.), Vol. 33, 71-80, 1979.

4. Rao, S. M. and D. R. Wilton, "E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies ," Electromagnetics, Vol. 10, 407-421, 1990.
doi:10.1080/02726349008908254

5. Sheng, X.-Q., J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu, "Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies," IEEE Trans. Antennas Propag., Vol. 46, No. 11, 1718-1726, Nov. 1998.
doi:10.1109/8.736628

6. Jung, B. H., T. K. Sarkar, and Y.-S. Chung, "A survey of various frequency domain integral equations for the analysis of scattering from three-dimensional dielectric objects," Progress In Electromagnetic Research, Vol. 36, 193-246, 2002.
doi:10.2528/PIER02021702

7. Yla-Oijala, P. and M. Taskinen, "Application of combined field integral equation for electromagnetic scattering by composite metallic and dielectric objects," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 1168-1173, March 2005.
doi:10.1109/TAP.2004.842640

8. Jung, B. H. and T. K. Sarkar, "Analysis of scattering from arbitrarily shaped 3-D conducting/dielectric composite objects using a combined field integral equation," J. of Electromag. Waves and Applicat., Vol. 18, No. 6, 729-743, June 2004.
doi:10.1163/156939304323105826

9. Jung, B. H., T. K. Sarkar, and M. Salazar-Palma, "Combined field integral equation for the analysis of scattering from threedimensional conducting bodies coated with a dielectric material ," Microwave Opt. Technol. Lett., Vol. 40, No. 6, 511-516, March 2004.
doi:10.1002/mop.20019

11. Ergul, O. and L. Gurel, "Improving the accuracy of the magnetic field integral equation with the linear-linear basis functions," Radio Science, Vol. 41, RS4004, 2006.
doi:10.1029/2005RS003307

10. Song, J. M. and W. C. Chew, "Multilevel fast multipole algorithm for solving combined field integral equations of electromagnetic scattering," Microw. Opt. Technol. Lett., Vol. 10, No. 1, 14-19, Sep. 1995.
doi:10.1002/mop.4650100107

11. Ergul, O. and L. Gurel, "Improving the accuracy of the magnetic field integral equation with the linear-linear basis functions," Radio Science, Vol. 41, RS4004, 2006.
doi:10.1029/2005RS003307

12. Yla-Oijala, P., M. Taskinen, and S. Jarvenpaa, "Analysis of surface integral equations in electromagnetic scattering and radiation problems," Engineering Analysis with Boundary Elements, Vol. 12, 196-209, 2008.
doi:10.1016/j.enganabound.2007.08.004

13. Yla-Oijala, P., M. Taskinen, and S. Jarvenpaa, "Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods," Radio Science, Vol. 40, No. 6, RS6002, Nov. 2005.
doi:10.1029/2004RS003169

14. Zhu, A., S. Gedney, and J. L. Visher, "A study of combined field formulations for material scattering for a locally corrected Nystrom discretization," IEEE Trans. Antennas Propag., Vol. 53, No. 12, 4111-4120, Dec. 2005.
doi:10.1109/TAP.2005.859918

15. Lloyd, T. W., J. M. Song, and M. Yang, "Numerical study of surface integral formulations for low-contrast objects ," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 482-485, 2005.
doi:10.1109/LAWP.2005.862062

16. Yla-Oijala, P. and M. Taskinen, "Improving conditioning of the electromagnetic surface integral equations using normalized field quantities," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 178-185, Jan. 2007.
doi:10.1109/TAP.2006.888418

17. Ergul, O. and L. Gurel, "Accurate solutions of scattering problems involving low-contrast dielectric objects with surface integral equations," Proceedings of the Second European Conference on Antennas and Propagation, EuCAP 2007, 390, Edinburg, Nov. 2007.

18. Ergul, O. and L. Gurel, "Fast and accurate solutions of scattering problems involving dielectric objects with moderate and low contrasts ," Proceedings of 2007 Computational Electromagnetics Workshop, CEM’07, 59-64, Izmir, Turkey, August 30–31, 2007.

19. Taskinen, M. and P. Yla-Oijala, "Current and charge integral equation formulation," IEEE Trans. Antennas Propag., Vol. 54, No. 1, 58-67, Jan. 2006.
doi:10.1109/TAP.2005.861580

20. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

21. Trintinalia, L. C. and H. Ling, "First order triangular patch basis functions for electromagnetic scattering analysis," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 11, 1521-1537, 2001.
doi:10.1163/156939301X00085