Vol. 3
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2008-05-09
Microwave Characterization of Dielectric Materials Using Bayesian Neural Networks
By
Progress In Electromagnetics Research C, Vol. 3, 169-182, 2008
Abstract
This paper shows the efficiency of neural networks (NN), coupled with the finite element method (FEM), to evaluate the broadband properties of dielectric materials. A characterization protocol is built to characterize dielectric materials and NN are used in order to provide the estimated permittivity. The FEM is used to create the data set required to train the NN. A method based on Bayesian regularization ensures a good generalization capability of the NN. It is shown that NN can determine the permittivity of materials with a high accuracy and that the Bayesian regularization greatly simplifies their implementation.
Citation
Hulusi Acikgoz, Yann Le Bihan, Olivier Meyer, and Lionel Pichon, "Microwave Characterization of Dielectric Materials Using Bayesian Neural Networks," Progress In Electromagnetics Research C, Vol. 3, 169-182, 2008.
doi:10.2528/PIERC08030603
References

1. Belhadj-Tahar, N. and A. Fourrier-Lamer, "Broad-band analysis of discontinuity used for dielectric measurement," IEEE MTT, Vol. 34, 346-349, 1986.
doi:10.1109/TMTT.1986.1133342

2. Hornik, K., M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks, Vol. 2, 359-366, 1989.
doi:10.1016/0893-6080(89)90020-8

3. Yildiz, B. and M. Turkmen, "Quasi-static models based on artificial neural networks for calculating the characteristic parameters of multilayer cylindrical coplanar waveguide and strip line," Progress In Electromagnetics Research B, Vol. 3, 1-22, 2008.
doi:10.2528/PIERB07112806

4. Zainud-Deen, S. H., H. A. Malhat, K. H. Awadalla, and E. S. El-Hadad, "Direction of arrival and state of polarization estimation using radial basis function neural network (RBFNN)," Progress In Electromagnetics Research B, Vol. 2, 137-150, 2008.
doi:10.2528/PIERB07111801

5. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of airsuspended trapezoidal and rectangular-shaped microshield lines," J. of Electromagn. Waves and Appl., Vol. 20, No. 9, 1161-1174, 2006.
doi:10.1163/156939306777442917

6. Ayestar’an, R. G. and F. Las-Heras, "Near field to far field transformation using neural networks and source reconstruction," J. of Electromagn. Waves and Appl., Vol. 20, No. 15, 2201-2213, 2006.
doi:10.1163/156939306779322594

7. Acikgoz, H., Y. Le Bihan, O. Meyer, and L. Pichon, "Neural networks for broad-band evaluation of complex permittivity using a coaxial discontinuity," Eur. Phys. J. Appl. Phys., Vol. 39, 197-201, 2007.
doi:10.1051/epjap:2007073

8. Sarle, W. S., "Neural Network FAQ, Part 2 of 7: Learning, periodic posting to the Usenet newsgroup comp.ai.neural-nets,", Available by ftp://ftp.sas.com/pub/Neural/FAQ.html.

9. MacKay, D. J. C., "Bayesian methods for adaptive models,", Thesis of California Institute of Technology, 1992.

10. Bartley, P. G., R. W. McClendon, and S. O. Nelson, "Permittivity determination by using an artificial neural network," IEEE Instrum. and Meas. Tech. Conference, 27-30, 1999.

11. Tuck, D. and S. Coad, "Neurocomputed model of open-circuited coaxial probes," IEEE Microwave Guided Lett., Vol. 5, 105-107, 1995.
doi:10.1109/75.372806

12. Meyer, O., "Instrumentation pour un controle de processus de reticulation sous micro-ondes par caracterisation large bande,", Thesis of the University Pierre et Marie Curie, 1996.

13. Belhadj-Tahar, N. E., A. Fourrier-Lamer, and H. De Chanterac, "Broad-band simultaneous measurement of complex permittivity and permeability using a coaxial discontinuity," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 1, January 1990.
doi:10.1109/22.44149

14. Courtois, S. and R. Phan-Tan-Luu, "Neural networks applied to the choice of an experimental design," EDP Sciences, Vol. 26, 304-310, Wiley-VCH, 1998.

15. Sarle, W. S., "Neural Network FAQ, Part 3 of 7: Generalization, periodic posting to the Usenet newsgroup comp.ai.neural-nets,", Available by ftp://ftp.sas.com/pub/Neural/FAQ.html.

16. Foresee, F. D. and M. T. Hagan, "Gauss-Newton approximation to Bayesian learning," IEEE Trans. Neural Networks, Vol. 3, 1930-1935, 1997.