Vol. 138
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-09-30
Performance Improvement of the Vertical Cavity Surface Emitting Laser Based on Active Hybrid Design and MIMO Configuration
By
Progress In Electromagnetics Research C, Vol. 138, 39-49, 2023
Abstract
The performance of the Vertical Cavity Surface Emitting Laser (VCSEL) for hybrid optical links SMF/FSO based on different data rates and MIMO configuration techniques was obtained using OptiSystemTM which is close to the results of the experimental system. The developed system was tested with various transmission distances: 20, 30, 40, and 50 km, and in the existence of many configuration kinds and modulations. In addition to that the hybrid system was estimated with different weather cases: clear, rain, and snow. The results state that the performance of the OOK-NRZ system reveals better performance than OOK-RZ system under the same conditions. Also, the performance of the free space link is better than the fiber link formost of the link ranges considered and configurations. For OOK-NRZ of the fiber link, it was found that the MIMO 8×8 technique has better system performance than other configurations, and the Q-factor = 11.39 and BER = 5.4×10-30 for a length of 50 Km while for the FSO link, it was found that MIMO 8×8 indicates a high performance for Q-factor = 12.7 and BER = 1.8×10-37. The maximum FSO link distances under different weather conditions and coupling ratios were found. For BER≤10−9, in NRZ format for SMF 50 km utilizing MISO8×1 technology in clear weather for 10 Gbps, 15 Gbps, and 20 Gbps for FSO links, the maximum accessible lengths are 0.6 Km, 0.51 Km, and 0.43 Km, respectively. The process is expanded to include snow conditions for data rates of 10 Gbps, 15 Gbps, and 20 Gbps for FSO links with lengths of 0.4 Km, 0.3 Km, and 0.26 Km, respectively.
Citation
Mohammed Quasim, and Haider J. Abd, "Performance Improvement of the Vertical Cavity Surface Emitting Laser Based on Active Hybrid Design and MIMO Configuration," Progress In Electromagnetics Research C, Vol. 138, 39-49, 2023.
doi:10.2528/PIERC23080710
References

1. Liu, A., P. Wolf, J. A. Lott, and D. Bimberg, "Vertical-cavity surface-emitting lasers for data communication and sensing," Photonics Research, Vol. 7, No. 2, 121, 2019.
doi:10.1364/PRJ.7.000121

2. Gatto, A., P. Parolari, P. Martelli, and P. Boffi, "VCSEL-based communications for metro and access networks," 2018 Photonics in Switching and Computing (PSC), 1-3, IEEE, Sep. 2018.

3. Shin, B., J. Jeong, W. S. Yoon, and J. Lee, "1550 nm VCSEL-based 10 Gb/s optical NRZ signal transmission over 20 km SMF using RSOA gain saturation," Optical Fiber Technology, Vol. 36, 222-226, 2017.
doi:10.1016/j.yofte.2017.03.013

4. Bohata, J., S. Zvanovec, M. Komanec, J. Jaros, and Z. Ghassemlooy, "Adaptation of transmitting signals over joint aged optical fiber and free space optical network under harsh environments," Optik, Vol. 151, 7-17, 2017.
doi:10.1016/j.ijleo.2017.08.004

5. Ghassemlooy, Z. and W. O. Popoola, "Terrestrial free-space optical communications," Mobile and Wireless Communications Network Layer and Circuit Level Design, Vol. 17, 355-391, 2010.

6. Esmail, M. A., A. Ragheb, H. Fathallah, and M. S. Alouini, "Experimental demonstration of outdoor 2.2 Tbps super-channel FSO transmission system," 2016 IEEE International Conference on Communications Workshops (ICC), 169-174, IEEE, May 2016.
doi:10.1109/ICCW.2016.7503783

7. Katsilieris, T. D., G. P. Latsas, H. E. Nistazakis, and G. S. Tombras, "An accurate computational tool for performance estimation of FSO communication links over weak to strong atmospheric turbulent channels," Computation, Vol. 5, No. 1, 18, 2017.
doi:10.3390/computation5010018

8. Stassinakis, A. N., H. E. Nistazakis, K. P. Peppas, and G. S. Tombras, "Improving the availability of terrestrial FSO links over log normal atmospheric turbulence channels using dispersive chirped Gaussian pulses," Optics & Laser Technology, Vol. 54, 329-334, 2013.
doi:10.1016/j.optlastec.2013.06.008

9. Li, J., M. Zhang, D. Wang, S. Wu, and Y. Zhan, "Joint atmospheric turbulence detection and adaptive demodulation technique using the CNN for the OAM-FSO communication," Optics Express, Vol. 26, No. 8, 10494-10508, 2018.
doi:10.1364/OE.26.010494

10. Al-Gailani, S. A., A. B. Mohammad, and R. Q. Shaddad, "Enhancement of free space optical link in heavy rain attenuation using multiple beam concept," Optik, Vol. 124, No. 21, 4798-4801, 2013.
doi:10.1016/j.ijleo.2013.01.098

11. Bouhadda, M., F. M. Abbou, M. Serhani, F. Chaatit, and A. Boutoulout, "Analysis of dispersion effect on an NRZ-OOK terrestrial free-space optical transmission system," Journal of the European Optical Society-Rapid Publications, Vol. 12, 1-6, 2016.

12. Singh, M., "Improved performance analysis of free space optics communication link under rain conditions using EDFA pre-amplifier," Journal of Optical Communications, Vol. 39, No. 2, 241-246, 2018.
doi:10.1515/joc-2016-0136

13. Esmail, M. A., H. Fathallah, and M. S. Alouini, "Outdoor FSO communications under fog: Attenuation modeling and performance evaluation," IEEE Photonics Journal, Vol. 8, No. 4, 1-22, 2016.
doi:10.1109/JPHOT.2016.2592705

14. Kaur, P., V. K. Jain, and S. Kar, "Performance analysis of free space optical links using multi-input multi-output and aperture averaging in presence of turbulence and various weather conditions," IET Communications, Vol. 9, No. 8, 1104-1109, 2015.
doi:10.1049/iet-com.2014.0926

15. Krishna, K. M. and M. G. Madhan, "Vertical cavity surface emitting laser based hybrid fiber-free space optic link for passive optical network applications," Optik, Vol. 171, 253-265, 2018.