login
Vol. 135
Latest Volume
All Volumes
PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-08-04
A Compact Energy Harvesting RFID Tag for Smart Traffic Law Enforcement Systems
By
Progress In Electromagnetics Research C, Vol. 135, 181-193, 2023
Abstract
Currently, the inspection and verification of vehicle-related information are done by police inspectors using camera-based systems or manually. Though integrating video technology is more advantageous than manual operation, they do not perform accurately due to bad weather or driving styles. This paper presents the design of a compact, durable, battery-free, UHF RFID tag with enough memory to carry necessary information for automatic identification of traffic law enforcement applications. The vehicle owner can also be alerted when the tag is detected due to the visual indication facility. This tag's novel feature includes adapting a modified T-match structure to match the highly capacitive impedance of the chosen RFID sensor chip, i.e. Farsens Rocky100. In contrast to existing designs, the proposed tag contains no extra lumped components that necessitate an external impedance matching circuit. Instead, the input impedance was matched using an advanced T-match topology and by optimizing the antenna's geometrical features. Simulations were done in Ansys HFSS (High-Frequency Structure Simulator) whereas the dimensions of all the printed elements were fine-tuned using parametric optimization. The tag was fabricated on a low-cost FR4 substrate and measured. The tag with an overall size of 110 × 25 × 2.4 mm3 can be detected by a conventional UHF RFID reader within a range of about 0.2 m-1 m. Due to the loop configuration, the tag exhibits a confined detection range while operating well within short ranges.
Citation
Shyama Wickramasinghe, Jeevani Windhya Jayasinghe, Gulam Alsath, Melaka Senadeera, and Malathi Kanagasabai, "A Compact Energy Harvesting RFID Tag for Smart Traffic Law Enforcement Systems," Progress In Electromagnetics Research C, Vol. 135, 181-193, 2023.
doi:10.2528/PIERC23051802
References

1. Parthiban, P., "Embeddable miniature UHF RFID near-field antenna for healthcare applications," Progress In Electromagnetics Research M, Vol. 87, 199-207, 2019.
doi:10.2528/PIERM19091111

2. Raihani, H., A. Benbassou, M. El Ghzaoui, and J. Belkadid, "Performance evaluation of a passive UHF RFID tag antenna using the embedded T-match structure,", May 2017, doi: 10.1109/WITS.2017.7934636.

3. Garcia Oya, J. R., R. Martin Clemente, E. Hidalgo Fort, R. Gonzalez Carvajal, and F. Munoz Chavero, "Design of an U shaped slotted patch antenna for RFID vehicle identificaronments," Sensors 2018, Vol. 18, No. 7, 2385, Jul. 2018.

5. Chowdary Polavarapu, S., U. Kunduru, and H. Nallamala, "RFID based automatic tollgate collection," Int. J. Eng. Technol., Vol. 7, No. 2, 1-5, 2018.
doi:10.14419/ijet.v7i2.1.9871

6. Van Hoang, T. Q., D. H. N. Bui, T. P. Nguyen, T. P. Vuong, and C. Defay, "Passive battery-free UHF RFID tag for athermic car windshields," 2017 IEEE Antennas and Propagation Society International Symposium, Proceedings, Vol. 2017-January, 643-644, Oct. 2017.

7. Agarwal, V., S. Sharma, and P. Agarwal, "IOT based smart transport management and vehicle-to-vehicle communication system," Comput. Networks, Big Data IoT 2021, Vol. 66, 709-716, 2021.

8. Gowri, S., J. S. Vimali, D. U. Karthik, and G. A. John Jeffrey, "Real time traffic signal and speed violation control system of vehicles using IOT," Lect. Notes Data Eng. Commun. Technol., Vol. 49, 953-958, 2020.
doi:10.1007/978-3-030-43192-1_105

9. Atta, A., S. Abbas, M. A. Khan, G. Ahmed, and U. Farooq, "An adaptive approach: Smart traffic congestion control system," J. King Saud Univ. --- Comput. Inf. Sci., Vol. 32, No. 9, 1012-1019, Nov. 2020.

10. Al-abassi, S. A. W., K. Y. A. Al-bayati, M. R. R. Sharba, and L. Abogneem, "Smart prepaid traffic fines system using RFID, IoT and mobile app," TELKOMNIKA Telecommunication Comput. Electron. Control., Vol. 17, No. 4, 1828-1837, Aug. 2019.
doi:10.12928/telkomnika.v17i4.10771

11. Naik, T., R. Roopalakshmi, N. Divya Ravi, P. Jain, B. H. Sowmya, and Manichandra, "RFID-based smart traffic control framework for emergency vehicles," Proc. Int. Conf. Inven. Commun. Comput. Technol., ICICCT 2018, 398-401, Sep. 2018.

12. Vishnevsky, V. M., A. Larionov, and R. Ivanov, "Architecture of application platform for RFID-enabled traffic law enforcement system," 2014 7th International Workshop on Communication Technologies for Vehicles, Nets4Cars-Fall 2014, 45-49, Dec. 2014.

13. Hoffman, A. J. and A. J. Pretorius, "SmartRoad: A New Approach to Law Enforcement in Dense Traffic Environments," IEEE Conf. Intell. Transp. Syst. Proceedings, ITSC, Vol. 2015-October, 598-605, Oct. 2015.

14. Vishnevsky, V. M. and A. Larionov, "Design concepts of an application platform for traffic law enforcement and vehicles registration comprising RFID technology," 2012 IEEE International Conference on RFID-Technologies and Applications, RFID-TA 2012, 148-153, 2012.
doi:10.1109/RFID-TA.2012.6404501

15. Grosinger, J., W. Pachler, and W. Bosch, "Tag size matters: Miniaturized RFID tags to connect smart objects to the internet," IEEE Microw. Mag., Vol. 19, No. 6, 101-111, Sep. 2018.
doi:10.1109/MMM.2018.2844029

16. Chung, Y. and T. H. Berhe, "Long-range UHF RFID tag for automotive license plate," Sensors 2021, Vol. 21, No. 7, 2521, Apr. 2021.

17. "Impinj Monza 4 RAIN RFID Tag Chips --- IMPINJ,", https://www.impinj.com/products/tag-chips/impinj-monza-4-series (accessed May 01, 2023).

18. "IC-Alien Technology,", https://www.alientechnology.com/products/ic/ (accessed May 01, 2023).

19. Nguyen, V. H., A. Diallo, P. Le Thuc, R. Staraj, S. Lanteri, and G. F. Carle, "A miniature implanted antenna for UHF RFID applications," Progress In Electromagnetics Research C, Vol. 99, 221-238, 2020.
doi:10.2528/PIERC19102905

20. Shaikh, K. M., K. J. Karande, and S. V. Surwase, "Nested slot suspended patch antenna using CST microwave studio,", Nov. 2018, doi: 10.1109/ICICET.2018.8533805.

21. Choudhary, A., K. Gopal, D. Sood, and C. C. Tripathi, "Development of compact inductive coupled meander line RFID tag for near-field applications," Int. J. Microw. Wirel. Technol., Vol. 9, No. 4, 757-764, May 2017.
doi:10.1017/S1759078716000751

22. "RFID inlay/label/tag factory/Farsens Rocky100,", https://www.richr d.com/epc-c1g2-batteryless-pressure-sensor.html (accessed June 23, 2023).
doi:10.1017/S1759078716000751

23. Kumar, M., A. Sharma, and I. J. G. Zuazola, "All-in-One UHF RFID tag antenna for retail garments using nonuniform meandered lines," Progress In Electromagnetics Research Letters, Vol. 94, 133-139, 2020.
doi:10.2528/PIERL20072102

24. Jalal, A. S. A. and A. Ismail, "A compact fractal-based asymmetrical dipole antenna for RFID tag applications," 2018 3rd Scienti c Conference of Electrical Engineering, SCEE 2018, 101-104, Jul. 2018.

25. Moh, C. W., E. H. Lim, F. L. Bong, and B. K. Chung, "Miniature coplanar-fed folded patch for metal mountable UHF RFID tag," IEEE Trans. Antennas Propag., Vol. 66, No. 5, 2245-2253, May 2018.
doi:10.1109/TAP.2018.2811784

26. Michel, A., P. Nepa, X. Qing, and Z. N. Chen, "Considering high-performance near-field reader antennas: Comparisons of proposed antenna layouts for ultrahigh-frequency near-field radio-frequency identi cation," IEEE Antennas Propag. Mag., Vol. 60, No. 1, 14-26, Feb. 2018.
doi:10.1109/MAP.2017.2774141

27. Sundaram, B. R., S. K. Vasudevan, E. Aravind, G. Karthick, and S. Harithaa, "Smart car design using RFID," Indian J. Sci. Technol., Vol. 8, No. 11, 1-5, 2015.

28. Dhaouadi, M., M. Mabrouk, T. P. Vuong, A. C. De Souza, and A. Ghazel, "UHF tag antenna for near-field and far-field RFID applications," WAMICON 2014, 2014.

29. Yao, Y., Y. Liang, J. Yu, and X. Chen, "Design of a multipolarized RFID reader antenna for UHF near-field applications," IEEE Trans. Antennas Propag., Vol. 65, No. 7, 3344-3351, Jul. 2017.
doi:10.1109/TAP.2017.2700873

30. Michel, A., A. Buffi, R. Caso, P. Nepa, G. Isola, and H. T. Chou, "Design and performance analysis of a planar antenna for near-field UHF-RFID desktop readers," Asia-Pacific Microwave Conference Proceedings, APMC, 1019-1021, 2012.

31. Dhaouadi, M., M. Mabrouk, A. Ghazel, and S. Tedjini, "Electromagnetic analysis of UHF near-field RFID tag antenna,", 2011, doi: 10.1109/URSIGASS.2011.6050654.

32. Ennasar, M. A., O. El Mrabet, K. Mohamed, and M. Essaaidi, "Design and characterization of a broadband flexible polyimide RFID tag sensor for NaCl and sugar detection," Progress In Electromagnetics Research C, Vol. 94, 273-283, 2019.
doi:10.2528/PIERC19052402

33. Wickramasinghe, S., J. Jayasinghe, and M. Senadeera, "Design of a passive RFID tag antenna with a modified T-match structure," 2021 IEEE 16th Int. Conf. Ind. Inf. Syst. ICIIS 2021 --- Proc., 46-51, 2021.

34. Aznabet, I., M. A. Ennasar, O. El Mrabet, G. Andia Vera, M. Khalladi, and S. Tedjni, "A broadband modified T-shaped planar dipole antenna for UHF RFID tag applications," Progress In Electromagnetics Research C, Vol. 73, 137-144, 2017.
doi:10.2528/PIERC16112102

35. "Nordic ID Sampo S1 datasheet v18 --- Nordic ID,", https://www.nordicid.com/nordic-id-sampo-s1-datasheet-v18/ (accessed Oct. 03, 2022).

36. Abdelnour, A., N. Fonseca, A. Rennane, D. Kaddour, and S. Tedjini, "Design of RFID sensor tag for cheese quality monitoring," IEEE MTT-S International Microwave Symposium Digest, Vol. 2019-June, 290-292, Jun. 2019.

37. Pichorim, S. F., N. J. Gomes, and J. C. Batchelor, "Two solutions of soil moisture sensing with RFID for landslide monitoring," Sensors 2018, Vol. 18, No. 2, 452, Feb. 2018.

38. Rennane, A., N. Fonseca, A. Abdelnour, et al. "Passive UHF RFID sensor tag for pressure and temperature conditions monitoring,", Sep. 2018, doi: 10.23919/URSI-AT-RASC.2018.8471459.

39. Occhiuzzi, C., S. Parrella, F. Camera, S. Nappi, and G. Marrocco, "RFID-based dual-chip epidermal sensing platform for human skin monitoring," IEEE Sens. J., Vol. 21, No. 4, 5359-5367, Feb. 2021.
doi:10.1109/JSEN.2020.3031664

40. Vena, A., B. Sorli, B. Saggin, R. Garcia, and J. Podlecki, "Passive UHF RFID sensor to monitor fragile objects during transportation," 2019 IEEE International Conference on RFID Technology and Applications, RFID-TA 2019, 415-420, Sep. 2019.

41. "RFID inlay/label/tag factory/STELLA-R,", https://www.richrfid.com/epc-c1g2-batteryless-led-indicator.html (accessed June 23, 2023).

42. "RFID inlay/label/tag factory/HYGRO-FENIX-RM,", https://www.richrfid.com/epc-c1g2-batteryless-ambient-temperature-and-relative-humidity-sensor-2.html (accessed June 23, 2023).

43. "RFID inlay/label/tag factory/FENIX-RM,", https://www.richrfid.com/epc-c1g2-batteryless-ambient-temperature-sensor-2.html (accessed June 23, 2023).