Vol. 135
Latest Volume
All Volumes
PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-08-07
EBG Integrated Metasurface Antenna for SAR Reduction
By
Progress In Electromagnetics Research C, Vol. 135, 227-240, 2023
Abstract
This research article presents an innovative design of a textile-based microstrip patch antenna with a metasurface for medical applications. The antenna is designed to operate at a frequency of 2.4 GHz, which is the frequency of the Industrial, Scientific, and Medical (ISM) band, to minimize the Specific Absorption Rate (SAR) in the human body. The design includes an Electromagnetic Band Gap (EBG) that is placed above a metasurface, which is made up of a periodic array of I-shaped structures. A foam layer is placed between the EBG and the antenna to improve performance. The use of textile-based materials in the antenna allows for flexibility and comfort when it is mounted on the human body. The integration of the metasurface in the antenna design allows for a more efficient transfer of energy from the antenna to the surrounding tissue, resulting in a reduction in the amount of energy absorbed by the body. The simulation of the antenna design is carried out using Computer Simulation Technology (CST), which provides accurate results for the performance of the antenna. After the implementation of the EBG array, the gain of the antenna is improved, resulting in better performance. The proposed antenna design achieved a SAR value of 0.077 W/kg over 1 gram of thigh tissue, which is well below the safety limit set by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). This implies that the integrated design of the antenna can be safely used inmedical applications.
Citation
Kaliappan Kavitha, Selva Rajan Vijay Gokul, Sivakumar Yazhini, J. Mothilal Kanaka Durga, and Raja Keerthana, "EBG Integrated Metasurface Antenna for SAR Reduction," Progress In Electromagnetics Research C, Vol. 135, 227-240, 2023.
doi:10.2528/PIERC23051303
References

1. Ashya, A. Y. I., Z. Z. Abidin, S. H. Dahlan, H. Majid, S. M. Shah, M. R. Kamarudin, and A. Alomainy, "Compact and low-profile textile ebg-based antenna for wearable medical applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2550-2553, 2017.
doi:10.1109/LAWP.2017.2732355

2. Arnmanee, P., "Gain improvement of microstrip patch antenna using octagonal-loop metasurface superstrate and octagonal-shaped EBG structure for 2.4 GHz band application," 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications, and Information Technology, 2018, 10.1109/ECTICon.2018.8619919.

3. Hariharan, V., S. Maheshwaran, S. Selvam, and N. Gunavathi, "Comparison of Electromagnetic Band Gap (EBG) structures for Speci c Absorption Rate (SAR) reduction," 2015 Annual IEEE India Conference (INDICON), New Delhi, India, 2015.

4. Shaw, T. and D. Mitra, "Metasurface-based radiative near-field wireless power transfer system for implantable medical devices," IET Microw. Antennas Propag., Vol. 13, No. 12, 1974-1982, Oct. 2019.
doi:10.1049/iet-map.2019.0141

5. Kashani, M., L. Shafai, and D. Isleifson, "Performance improvement of a microstrip patch antenna on an EBG structure," IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Feb. 17, 2021.

6. Zaman, M. I., F. T. Hamedani, and H. Amjadi, "A New EBG structure and its application on microstrip patch antenna," International Symposium on Antenna Technology and Applied Electromagnetics, Aug. 9, 2012.

7. Alibakhshikenari, M., F. Babaeian, B. S. Virdee, S. Assa, L. Azpilicueta, C. H. See, A. A. Althuwayb, I. Huynen, F. Falcone, and E. Limiti, "A comprehensive survey on Various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems," IEEE Access, Vol. 8, 192965-193004, Oct. 21, 2020.

8. Jiang, Z. H., D. E. Brocker, P. E. Sieber, and D. H. Werner, "A compact, low-profile metasurface-enabled antenna for wearable medical body-area network devices," IEEE Transactions on Antenna and Propagation, Vol. 62, No. 8, Aug. 2014.
doi:10.1109/TAP.2014.2327650

9. Wang, M., Z. Yang, J. Wu, J. Bao, J. Liu, L. Cai, T. Dang, H. Zheng, and E. Li, "Investigation of SAR reduction using a flexible antenna with metamaterial structure in wireless body area network," IEEE Trans. Antennas Propag., Vol. 66, No. 6, 3076-3086, Jun. 2018.
doi:10.1109/TAP.2018.2820733

10. Zhang, K., G. A. E. Vandenbosch, and S. Yan, "A novel design approach for compact wearable antennas based on metasurfaces," IEEE Trans. Biomed. Circuits Syst., Vol. 14, No. 4, 918-927, 2020.
doi:10.1109/TBCAS.2020.3010259

11. Purohit, S. and F. Raval, "Wearable-textile patch antenna using jeans as substrate at 2.45 GHz," International Journal of Engineering Research & Technology (IJERT), Vol. 3, No. 5, May 2015, ISSN: 2278-0181.

12. Janapala, D. K., M. Nesasudha, T. Mary Neebha, and R. Kumar, "Speci c absorption rate reduction using metasurface unit cell for flexible polydimethylsiloxane antenna for 2.4 GHz wearable applications," International Journal RF and Microwave Computer-aided Engineering, 2019.

13. Sheeba, R. and T. Jayanthy, "Analysis and implementation of flexible microstrip antenna of soft substrates with different Feeding Techniques for ISM band," Proceeding of International Conference on System, Computation, Automation, and Networking, Oct. 24, 2019.

14. Youssef, O. M., M. El Atrash, and M. A. Abdalla, "A compact fully fabric I-shaped antenna supported with textile-based AMC for low SAR 2.45 GHz wearable applications," Microwave Optical Technology Letters, 2023.

15. Iqbal, K. and Q. U. Kha, "Review of metasurfaces through unit cell design an numerical extraction of parameters and their applications in antennas," IEEE Access, Vol. 10, 112368-11239, Oct. 13, 2022.

16. Azarbar, A. and J. Ghalibafan, "A compact low-permittivity dual-layer EBG structure for mutual coupling reduction," International Journal of Antennas and Propagation, Vol. 2011, Article ID 237454, 2011, doi: 10.1155/2011/237454.

17. Agus, A. N. S. S., T. Sabapathy, M. Jusoh, M. A. Abdelghany, K. Hossain, S. Padmanathan, S. S. Al-Bawri, and P. J. Soh, "Combined RIS and EBG surfaces inspired meta-wearable textile MIMO antenna using viscose-wool felt," MDPI Journals, 2022, doi: org/10.3390/polym14101989.

18. Althuwayb, A., M. Alibakhshikenari, B. S. Virde, N. Rashid, K. Kaaniche, A. B. Atitallah, A. Armghan, O. I. Elhamrawy, C. H. See, and F. Falcone, "Metasurface inspired flexible wearable MIMO array for wireless body area network applications and biomedical telemetry devices," IEEE Access, Vol. 11, Jan. 5, 2023.

19. Kumar, A., D. Ary, and D. K. Srivastava, "Band width of microstrip antenna improved by using mushroom type EBG structure," IMPACT 2013, IEEE, May 22, 2014.

20. Gnanagurunathan, G. and U. G. Udofia, "Performance analysis of the mushroom-like-EBG structure integrated with a microstrip patch antenna," IEEE Asia-Paci c Conference on Applied Electromagnetics (APACE), Feb. 24, 2011.

21. Usman, F. and R. S. Yadav, "Wideband reconfigurable antenna for industrial, scientific and medical applications," International Journal of Information Technology and Electrical Engineering (ITEE), Vol. 11, No. 2, Apr. 2022.

22. Sugunavathy, S., V. K. Sudha, and D. Parthiban, "Fabric woven textile antenna for medical applications," Journal of Physics, 012022-012022, 2021.

23. Akram, G. and Y. Jasmy, "Speci c Absorption Rate (SAR) on the human head as function of orientation of plane wave radiation: FDTD-based analysis," Second Asia International Conference on Modelling and Simulation (AMS), IEEE, May 23, 2008.

24. Gao, G.-P., B. Hu, S.-F. Wang, and C. Yang, "Wearable circular ring slot antenna with EBG structure for wireless body area network," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 434-437, 2018.
doi:10.1109/LAWP.2018.2794061

25. Balaji Vignesh, L. K. and K. Kavitha, "A Survey on fractal antenna design," International Journal of Pure and Applied Mathematics, Vol. 120, No. 6, 10941-10959, 2018.