login
Vol. 132
Latest Volume
All Volumes
PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-04-19
Miniaturized Metamaterial Ultra-Wideband Antenna for WLAN and Bluetooth Applications
By
Progress In Electromagnetics Research C, Vol. 132, 117-127, 2023
Abstract
In this paper, a new type of defected ground structure (DGS) antenna based on metamaterial is presented. The proposed antenna has the performance of global bandwidth and gain improvements. The miniaturization of the antenna can be achieved by loading metamaterials on the DGS antenna to reduce the resonance frequency of the antenna. Due to the coupling effect between the metamaterial and the DGS, multiple resonant points are generated, thus extending the impedance bandwidth of the antenna. The impedance bandwidth of the proposed antenna ranges from 3.5 GHz to 6.32 GHz (56.6%). The degree of miniaturization is 37.9%, and the measured peak gain is 4.5 dB. The size of the antenna is only 0.35λ0 × 0.35λ0 × 0.011λ0, which has a highly stable antenna efficiency of greater than 90% over the entire operating bandwidth. The proposed antenna is suitable for WLAN and Bluetooth applications.
Citation
Gengliang Chen, Cong Guo, Jincheng Xue, Zhuopeng Wang, and Mingxiang Pang, "Miniaturized Metamaterial Ultra-Wideband Antenna for WLAN and Bluetooth Applications," Progress In Electromagnetics Research C, Vol. 132, 117-127, 2023.
doi:10.2528/PIERC23030603
References

1. Salih, A. A. and M. S. Sharawi, "A dual-band highly miniaturized patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1783-1786, 2016.
doi:10.1109/LAWP.2016.2536678

2. Olawoye, T. O. and P. Kumar, "A high gain microstrip patch antenna with slotted ground plane for sub-6 GHz 5G communications," 2020 International Conference on Artificial Intelligence, Big Data, Computing, and Data Communication Systems (icABCD), 2020.

3. Asghar, M., S. Lupin, S. Shoaib, and P. Excell, "Design and analysis of compact antenna for 5G communication devices," 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2020.

4. Patchala, K., Y. R. Rao, and A. M. Prasad, "Triple band notch compact MIMO antenna with defected ground structure and split ring resonator for wideband applications," Heliyon, Vol. 6, e03078, 2020.
doi:10.1016/j.heliyon.2019.e03078

5. Nor, M. Z. M., S. K. A. Rahim, M. I. Sabran, et al. "Slotted dual band directive antenna with defected ground plane structure," Microwave Conference Proceedings, 432-434, IEEE, 2014.

6. Yadav, N. P., "Triple U slot loaded defected ground plane antenna for multiband operations," Microwave and Optical Technology Letters, Vol. 58, No. 1, 124-128, 2016.
doi:10.1002/mop.29502

7. Pei, J., A. G. Wang, S. Gao, et al. "Miniaturized triple-band antenna with a defected ground plane for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, No. 4, 298-301, 2011.

8. Thomas, K. G. and M. Sreenivasan, "Compact triple band antenna for WLAN/WiMAX applications," Electronics Letters, Vol. 45, No. 16, 811-813, 2009.
doi:10.1049/el.2009.1658

9. Sarkar, S., A. D. Majumdar, S. Mondal, et al. "Miniaturization of rectangular microstrip patch antenna using optimized single-slotted ground plane," Microwave and Optical Technology Letters, Vol. 53, No. 1, 111-115, 2015.
doi:10.1002/mop.25661

10. Ren, J., S. Gong, and W. Jiang, "Low-RCS monopolar patch antenna based on a dual-ring metamaterial absorber," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 102-105, Jan. 2018.
doi:10.1109/LAWP.2017.2776978

11. Kedze, K. E., H. Wang, and I. Park, "A metasurface-based wide-bandwidth and high-gain circularly polarized patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 1, Jan. 2022.
doi:10.1109/TAP.2021.3098574

12. Xue, M., W. Wan, Q. Wang, and L. Cao, "Low-profile millimeter-wave broadband metasurface antenna with four resonances," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 4, Apr. 2021.
doi:10.1109/LAWP.2021.3053589

13. Hossain, B. and F. Hossain, "A dual band microstrip patch antenna with metamaterial superstrate for biomedical applications," 2021 International Conference on Electronics, Communications and Information Technology (ICECIT), Sep. 14-16, 2021.

14. Dong, Y., H. Toyao, and T. Itoh, "Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 772-785, Feb. 2012.
doi:10.1109/TAP.2011.2173120

15. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of patch antennas using a metamaterial-inspired technique," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2175-2182, May 2012.
doi:10.1109/TAP.2012.2189699

16. Shaw, T., D. Bhattacharjee, and D. Mitra, "Miniaturization of slot antenna using split ring resonators," IEEE AEMC, Guwahati, India, Dec. 2015.

17. Zhang, B. and X. Xu, "Design of a miniaturized annular ring metamaterial microstrip antenna," 2021 International Symposium on Antennas and Propagation (ISAP), 1-2, Taipei, Taiwan, 2021.

18. Dai, G., X. Xu, and X. Deng, "Miniaturized semicircular disc patch antenna designed with sector-shaped metamaterials," 2020 International Symposium on Antennas and Propagation (ISAP), 409-410, Osaka, Japan, 2021.

19. Saghanezhad, S. A. H. and Z. Atlasbaf, "Miniaturized dual-band CPW-fed antennas loaded with U-shaped metamaterials," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 658-661, 2015.
doi:10.1109/LAWP.2014.2376554

20. Shaw, T. and G. Samanta, "Miniaturized slot antenna design using high permittivity & permeability property of metamaterial," 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), 1-4, Jaipur, Rajasthan, India, 2021.

21. Smith, D. R., D. C. Vier, and T. Koschny, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617