submit Submit login
Vol. 131
Latest Volume
All Volumes
PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-03-30
High-Gain Pixel Patch Antenna Array for Miniature Wireless Communications and IoT Applications
By
Progress In Electromagnetics Research C, Vol. 131, 209-225, 2023
Abstract
Since wireless technology has been developed so quickly, there is a surge in interest in multi-band reconfigurable antennas as devices and satellites continue to advance in the direction of downsizing. Due to physical limitations, current and future wireless technologies as well as the cutting-edge compact satellites need antenna systems that are dependable, effective, and have a large bandwidth. The fifth generation of mobile communication technology promises to deliver fast data rates, low latency, and exceptional spectrum efficiency. One of the most crucial factors that makes this technology possible is the way in which satellite technology is integrated with terrestrial communication systems. Therefore, it is crucially important to develop next-generation antennas that can meet the functional requirements for 5G and CubeSat applications. Additionally, the antenna components need to be small and low-profile for Advanced Driver-Assistance Systems (ADAS) and Vehicle-to-Everything (V2X) to function properly. Reconfigurable antennas can offer a wide range of configurations in terms of operating frequency, radiation pattern, and polarization. This paper aims to investigate pixel antenna arrays for wireless communication and Internet of Things (IoT) systems. Design, analysis, and comparison have been done on both the traditional and proposed pixel design configurations. The proposed pixel patch design area reduction is about 75%, and the full design area reduction is about 90%, compared to conventional patches. The pixel design parameters of these antennas are carefully examined to increase their gain, radiation pattern, and efficiency. For a variety of applications, increased gain and various radiation pattern configurations may be advantageous. As a result, increasing the coverage of 5G, 6G, and small satellites requires antennas with a small size, higher gain, and better radiation patterns.
Citation
Yasser M. Madany, Hassan M. Elkamchouchi, and Sara I. Abd-Elmonieum, "High-Gain Pixel Patch Antenna Array for Miniature Wireless Communications and IoT Applications," Progress In Electromagnetics Research C, Vol. 131, 209-225, 2023.
doi:10.2528/PIERC23021504
References

1. Liolis, K., A. Geurtz, R. Sperber, et al. "Use cases and scenarios of 5G integrated satellite-terrestrial networks for enhanced mobile broadband: The SaT5G approach," Int. J. Satell. Commun. Netw., Vol. 37, No. 2, 91-112, 2019.
doi:10.1002/sat.1245

2. Arifin, J., "Study of CUBESAT systems for IoT," Proc. 12th Int. Renew. Eng. Conf. (IREC), 1-3, Apr. 2021.

3. Bassoli, R., F. Granelli, C. Sacchi, S. Bonafini, and F. H. Fitzek, "CubeSat based 5G cloud radion access networks: A novel paradigm for on-demand anytime/anywhere connectivity," IEEE Veh. Technol. Mag., Vol. 15, No. 2, 39-47, 2020.
doi:10.1109/MVT.2020.2979056

4. Centenaro, M., C. E. Costa, F. Granelli, C. Sacchi, and L. Vangelista, "A survey on technologies, standards and open challenges in satellite IoT," IEEE Commun. Surveys Tuts., Vol. 23, No. 3, 1693-1720, 3rd Quart., 2021.
doi:10.1109/COMST.2021.3078433

5. Padhi, P. K. and F. Charrua-Santos, "6G enabled industrial Internet of Everything: Towards a theoretical framework," Appl. Syst. Innov., Vol. 4, No. 1, 11, Feb. 2021.
doi:10.3390/asi4010011

6. Ramahatla, K., M. Mosalaosi, A. Yahya, and B. Basutli, "Multiband reconfigurable antennas for 5G wireless and CubeSat applications: A review," IEEE Access, Vol. 10, 40910-40931, 2022.
doi:10.1109/ACCESS.2022.3166223

7. Hu, P. F., K. W. Leung, Y. M. Pan, and S. Y. Zheng, "Electrically small, planar, horizontally polarized dual-band omnidirectional antenna and its application in a MIMO system," IEEE Trans. Antennas Propag., Vol. 69, No. 9, 5345-5355, 2021, doi: 10.1109/TAP.2021.3061096.
doi:10.1109/TAP.2021.3061096

8. Barman, B., D. Chatterjee, and A. N. Caruso, "Performance optimization of electrically small microstrip patch antennas on finite ground planes," 2020 IEEE Intern. Symp. on Ant. and Propag. and North American Radio Science Meeting, 1-2, 2020.

9. Chen, X., M.-C. Tang, D. Yi, and R. W. Ziolkowski, "An interdigitated structure-based, electrically small dipole antenna with enhanced bandwidth," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 355-356, 2020.
doi:10.1109/IEEECONF35879.2020.9329584

10. Shameena, V. A., M. Manoj, M. Remsha, P. V. Anila, M. Sreejith Nair, and P. Mohanan, "Wideband electrically small monopole antenna," 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, 1-3, 2020.

11. Barman, B., K. C. Durbhakula, B. Bissen, D. Chatterjee, and A. N. Caruso, "Performance optimization of a microstrip patch antenna using characteristic mode and D/Q analysis," 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, 1-4, 2020.

12. Yu, Y.-H., Z.-Y. Zong, W. Wu, and D.-G. Fang, "Dielectric slab superstrate electrically small antennas with high gain and wide band," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 9, 1476-1480, Sept. 2020.
doi:10.1109/LAWP.2020.3005721

13. Shubbar, M. and B. Rakos, "A self-adapting, pixelized planar antenna design for infrared frequencies," Sensors, Vol. 22, 3680, 2022, https://doi.org/10.3390/s22103680.
doi:10.3390/s22103680

14. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Inc., 2001.

15. Ramesh, M. and K. B. Yip, "Design formula for inset fed microstrip patch antenna," Journal of Micro. and Opt., Vol. 3, No. 3, 5-10, Dec. 2003.

16. Saturday, J. C., K. M. Udofi, and A. B. Obot, "Compact rectangular slot patch antenna for dual frequency operation using inset feed technique," Intern. Journal of Information and Communication Sciences, Vol. 1, No. 3, 47-53, Jan. 2017.

17. "ANSYS electronics desktop package,", ANSYS v18, Ansoft Corporation.

18. Madany, Y. M., H. M. Elkamchouchi, and S. I. Abd-Elmonieum, "Frequency-tunable electrically small diversity patch antennas for cognitive radio applications," 2021 Inter. Telecommunications Conf. (ITC-Egypt), 1-6, 2021.

19. Khan, M. U., M. S. Sharawi, and R. Mittra, "Microstrip patch antenna miniaturization techniques: A review," IET Microwaves, Antennas & Propagation, Vol. 9, 913-922, 2015.
doi:10.1049/iet-map.2014.0602

20. El Hachimi, Y., Y. Gmih, E. Makroum, and A. Farchi, "A miniaturized patch antenna designed and manufactured using slot's technique for RFID UHF mobile applications," International Journal of Electrical and Computer Engineering (IJECE), Vol. 8, No. 6, 5134-5143, Dec. 2018.
doi:10.11591/ijece.v8i6.pp5134-5143

21. Nagabhushana, H. M., C. R. Byrareddy, N. Thangadurai, and S. U. Sharief, "Slotted and miniaturized patch antenna for WLAN and WiMAX applications," International Journal of Advanced Information Science and Technology (IJAIST), Vol. 6, No. 4, Apr. 2017.

22. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley & Sons, Inc., 2005.

23. Borazjani, O., M. Nosrati, and M. Daneshmand, "A novel triple notch-bands ultra wide-band band-pass filters using parallel multi-mode resonators and CSRRs," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 24, No. 3, 375-381, 2014.
doi:10.1002/mmce.20770

24. Pozar, D. M., Microwave Engineering, 4th Ed., John Wiley & Sons, 2012.

25. Hayati, M. and M. Nosrati, "Loaded coupled transmission line approach of left-handed (LH) structures and realization of a highly compact dual-band branch-line coupler," Progress In Electromagnetics Research C, Vol. 10, 75-86, 2009.
doi:10.2528/PIERC09041508

26. Rezaei, A. and L. Noori, "Microstrip hybrid coupler with a wide stop-band using symmetric structure for wireless applications," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 17, No. 1, Mar. 2018.
doi:10.1590/2179-10742018v17i11121

27. Sarkar, S., A. D. Majumdar, S. Mondal, S. Biswas, D. Sarkar, and P. P. Sarkar, "Miniaturization of rectangular microstrip patch antenna using optimized single-slotted ground plane," Microwave Opt. Technol. Lett., Vol. 53, No. 1, 111-115, 2011.
doi:10.1002/mop.25661

28. Sarkar, M. and S. K. Chowdhury, "A new compact microstrip patch antenna," Microwave Opt. Technol. Lett., Vol. 47, No. 4, 379-381, 2005.
doi:10.1002/mop.21174

29. Prabhakar, H. V., U. K. Kummuri, R. M. Yadahalli, and V. Munnappa, "Effect of various meandering slots in rectangular microstrip antenna ground plane for compact broadband operation," Electron. Lett., Vol. 43, No. 16, 16-17, 2007.
doi:10.1049/el:20070688

30. Lin, S.-Y. and K.-C. Huang, "A compact microstrip antenna for GPS and SCS application," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 1227-1229, 2005.
doi:10.1109/TAP.2004.842597

31. Kuo, J.-S. and K.-L. Wong, "A compact microstrip antenna with meandering slots in the ground plane," Microwave Opt. Technol. Lett., Vol. 29, No. 2, 95-97, 2001.
doi:10.1002/mop.1095

32. Er-Rebyiy, R., J. Zbitou, A. Tajmouati, M. Latrach, A. Errkik, and L. El Abdellaoui, "A new design of a miniature microstrip patch antenna using defected ground structure DGS," 2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), 1-4, 2017.

33. Pandhare, R. A., P. L. Zade, and M. P. Abegaonkar, "Miniaturized microstrip antenna array using defected ground structure with enhanced performance," Engineering Science and Technology, An International Journal, Vol. 19, No. 3, 1360-1367, 2016.
doi:10.1016/j.jestch.2016.03.007

34. Bhakhar, P., V. Dwivedi, and P. Prajapati, "Directivity enhancement of miniaturized directional coupler using defected ground structure," Proceedings of the International Conference on Communication and Signal Processing 2016 (ICCASP 2016), Advances in Intelligent Systems Research, Dec. 2016.

35. Bhakhar, P. and V. Dwivedi, "Symmetrical impedance microstrip coupled line coupler using fractal DGS for lower C-band applications," International Journal of Microwave and Optical Technology, Vol. 13, No. 2, 159-166, 2018.

36. Sanega, A. and P. Kumar, "A compact microstrip patch antenna for mobile communication applications," Micro-Electronics and Telecommunication Engineering, D. K. Sharma, V. E. Balas, L. H. Son, R. Sharma, K. Cengiz, Lecture Notes in Networks and Systems, Vol. 106, Springer, Singapore, 2020.

37. Roshani, S., S. I. Yahya, S. Roshani, and M. Rostami, "Design and fabrication of a compact branch-line coupler using resonators with wide harmonics suppression band," Electronics, MDPI, Vol. 11, 793, 2022.
doi:10.3390/electronics11050793

38. Rani, R., P. Kaur, and N. Verma, "Metamaterials and their applications in patch antenna: A review," International Journal of Hybrid Information Technology, Vol. 8, No. 11, 199-212, 2015.
doi:10.14257/ijhit.2015.8.11.17

39. Nelaturi, S. and N. P. Venkata, "A compact microstrip patch antenna based on metamaterials for Wi-Fi and WiMAX applications," Journal of Electromagnetic Engineering and Science, Vol. 18, No. 3, 182-187, Jul. 2018.
doi:10.26866/jees.2018.18.3.182

40. Varamini, G., A. Keshtkar, and M. N. Moghadasi, "Compact and miniaturized microstrip antenna based on fractal and metamaterial loads with reconfigurable qualification," AEU Inter. Jour. of Electronics and Communications, Vol. 83, 213-221, 2018.
doi:10.1016/j.aeue.2017.08.057

41. Li, R., G. Dejean, M. M. Tentzeris, and J. Laskar, "Development and analysis of a folded shorted-patch antenna with reduced size," IEEE Trans. Antennas Propag., Vol. 52, No. 2, 555-562, 2004.
doi:10.1109/TAP.2004.823884

42. Chiu, C. Y., C. H. Chan, and K. M. Luk, "Study of a small wide-band patch antenna with double shorting walls," IEEE Antennas Wireless Propag. Lett., Vol. 3, No. 1, 230-231, 2004.
doi:10.1109/LAWP.2004.836579

43. Holub, A. and M. Polivka, "A novel microstrip patch antenna miniaturization technique: A meanderly folded shorted-patch antenna," 14th Conf. on Microwave Techniques, 1-4, Apr. 2008.

44. Luk, K., R. Chair, and K. Lee, "Small rectangular patch antenna," Electron. Lett., Vol. 34, No. 25, 2366, 1998.
doi:10.1049/el:19981643

45. Moon, S.-M., H.-K. Ryu, J.-M. Woo, and H. Ling, "Miniaturization of λ/4 microstrip antenna using perturbation effect and plate loading for low-VHF-band applications," Electron. Lett., Vol. 47, No. 3, 162, 2011.
doi:10.1049/el.2010.3647

46. Porath, R., "Theory of miniaturized shorting-post microstrip antennas," IEEE Trans. Antennas Propag., Vol. 48, No. 1, 41-47, 2000.
doi:10.1109/8.827384

47. Mishra, A., P. Singh, N. P. Yadav, J. Ansari, and B. Vishvakarma, "Compact shorted microstrip patch antenna for dual-band operation," Progress In Electromagnetics Research C, Vol. 9, 171-182, 2009.
doi:10.2528/PIERC09071007

48. Wang, S., H. W. Lai, K. K. So, and K. B. Ng, "Wideband shorted patch antenna with a modified half U-slot," IEEE Antennas Wireless Propag. Lett., Vol. 11, 689-692, 2012.
doi:10.1109/LAWP.2012.2204716

49. Waterhouse, R., S. Targonski, and D. Kokotoff, "Design and performance of small printed antennas," IEEE Trans. Antennas Propag., Vol. 46, No. 11, 1629-1633, 1998.
doi:10.1109/8.736612

50. Souza, E. A. M., P. S. Oliveira, A. G. D'Assunção, L. M. Mendonça, and C. Peixeiro, "Miniaturization of a microstrip patch antenna with a koch fractal contour using a social spider algorithm to optimize shorting post position and inset feeding," Hindawi Publishing Corporation, International Journal of Antennas and Propagation, Vol. Article ID 6284830, 10 pages, 2019, 2019.

51. Rathod, S. M., R. N. Awale, and K. P. Ray, "Shorted circular microstrip antennas for 50 Ω microstrip line feed with very low cross polarization," Progress In Electromagnetics Research Letters, Vol. 74, 91-98, 2018.
doi:10.2528/PIERL18010935

52. Salih, A. A. and M. S. Sharawi, "A dual-band highly miniaturized patch antenna," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1783-1786, 2016.
doi:10.1109/LAWP.2016.2536678

53. Menga, F. and S. Sharma, "Single feed dual-band (2.4 GHz/5 GHz) miniaturized patch antenna for wireless local area network (WLAN) communications," Journal of Electromagnetic Waves and Applications, 2016.

54. Boukarkar, A., X. Q. Lin, Y. Jiang, and Y. Q. Yu, "Miniaturized single-feed multiband patch antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 850-854, Feb. 2017.
doi:10.1109/TAP.2016.2632620

55. Ramzan, M. and K. Topalli, "A miniaturized patch antenna by using a CSRR loading plane," Hindawi Publishing Corporation, International Journal of Antennas and Propagation, Vol. 2015, Article ID 495629, 9 pages, 2015.

56. Painam, S. and C. Bhuma, "Miniaturizing a microstrip antenna using metamaterials and metasurfaces [Antenna applications corner]," IEEE Antennas and Propagation Magazine, Vol. 61, No. 1, 91-135, Feb. 2019.
doi:10.1109/MAP.2018.2883018

57. Chakraborty, S., M. Gangapadhyaya, B. Sinha, and M. Chakraborty, "Miniaturization of rectangular microstrip antenna at WiMAX band with slot in patch and ground surface," 2018 2nd International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), 1-5, Kolkata, India, 2018.

58. Dhakshinamoorthi, M. K., S. Gokulakkrizhna, M. Denesh Kumar, et al. "Rectangular microstrip patch antenna miniaturization using improvised genetic algorithm," 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI), 894-898, Tirunelveli, India, 2020.